Skip to main content

Advertisement

Log in

Ferritin-catalyzed consumption of hydrogen peroxide by amine buffers causes the variable Fe2+ to O2 stoichiometry of iron deposition in horse spleen ferritin

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ferritin catalyzes the oxidation of Fe2+ by O2 to form a reconstituted Fe3+ oxy-hydroxide mineral core, but extensive studies have shown that the Fe2+ to O2 stoichiometry changes with experimental conditions. At Fe2+ to horse spleen ferritin (HoSF) ratios greater than 200, an upper limit of Fe2+ to O2 of 4 is typically measured, indicating O2 is reduced to 2H2O. In contrast, a lower limit of Fe2+ to O2 of approximately  2 is measured at low Fe2+ to HoSF ratios, implicating H2O2 as a product of Fe2+ deposition. Stoichiometric amounts of H2O2 have not been measured, and H2O2 is proposed to react with an unknown system component. Evidence is presented that identifies this component as amine buffers, including 3-N-morpholinopropanesulfonic acid (MOPS), which is widely used in ferritin studies. In the presence of non-amine buffers, the Fe2+ to O2 stoichiometry was approximately  4.0, but at high concentrations of amine buffers (0.10 M) the Fe2+ to O2 stoichiometry is approximately 2.5 for iron loadings of eight to 30 Fe2+ per HoSF. Decreasing the concentration of amine buffer to zero resulted in an Fe2+ to O2 stoichiometry of approximately 4. Direct evidence for amine buffer modification during Fe2+ deposition was obtained by comparing authentic and modified buffers using mass spectrometry, NMR, and thin layer chromatography. Tris(hydroxymethyl)aminomethane, MOPS, and N-methylmorpholine (a MOPS analog) were all rapidly chemically modified during Fe2+ deposition to form N-oxides. Under identical conditions no modification was detected when amine buffer, H2O2, and O2 were combined with Fe2+ or ferritin separately. Thus, a short-lived ferritin intermediate is required for buffer modification by H2O2. Variation of the Fe2+ to O2 stoichiometry versus the Fe2+ to HoSF ratio and the amine buffer concentration are consistent with buffer modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

Notes

  1. During the iron deposition process, Escherichia coli bacterioferritin initially generates H2O2 at the FC, which then reacts rapidly with Fe2+ to form water [28], whereas Azotobacter vinelandii bacterioferritin generates water directly [29]. In both cases, an Fe2+ to O2 stoichiometry of 4 is observed.

  2. Two forms of unmodified MOPS were observed by 1H NMR: (1) One from solid MOPS immediately dissolved in D2O (seven peaks were shown, cf. Fig. 2a in [41]) and (2) MOPS aqueous solution evaporated to dryness and dissolved in D2O (Fig. 5b). The differences between these two spectra are due to the protons on C4 and C5. In dissolved MOPS solid, the protons attached to C4 or C5 are nonexchangeable or diastereotopic, because of different orientations, i.e., axial and equatorial, when the morpholine ring exhibits a chair structure; however, for the evaporated and redissolved MOPS sample the protons on C4 or C5 are identical and only five peaks were observed. Since all the MOPS oxidation samples were prepared by evaporation and redissolving, the NMR spectrum of the second form of MOPS is shown for direct comparison.

  3. In the absence of group 1 buffer, Scheme 1 reduces to the sum of the reactions shown in Eqs. 2, 3, and 4, which has the same form as the reaction shown in Eq. 1, giving an Fe2+ to O2 stoichiometry of 4.

Abbreviations

COSY:

Correlation spectroscopy

FC:

Ferroxidase center

HEPES:

N-2-Hydroxyethylpiperazine-N-2-ethanesulfonic acid

HoSF:

Horse spleen ferritin

MOPS:

3-N-Morpholinopropanesulfonic acid

NMM:

N-Methylmorpholine

NMO:

N-Methylmorpholine N-oxide

rHF:

Recombinant human heavy ferritin

rLF:

Recombinant human light ferritin

TES:

N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid

TLC:

Thin layer chromatography

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Proulx-Curry PM, Chasteen ND (1995) Coord Chem Rev 144:347–368

    CAS  Google Scholar 

  2. Harrison PM, Arosio P (1996) Biochim Biophys Acta 1275:161–203

    PubMed  Google Scholar 

  3. Waldo GS, Theil EC (1996) Ferritin and iron biomineralization. Pergamon, Oxford

    Google Scholar 

  4. Chasteen ND, Harrison PM (1999) J Struct Biol 126:182–194

    CAS  PubMed  Google Scholar 

  5. Theil EC (1987) Annu Rev Biochem 56:289–316

    CAS  PubMed  Google Scholar 

  6. Xu B, Chasteen ND (1991) J Biol Chem 266:19965–19970

    CAS  PubMed  Google Scholar 

  7. Sun S, Arosio P, Levi S, Chasteen ND (1993) Biochemistry 32:9362–9369

    CAS  PubMed  Google Scholar 

  8. Waldo GS, Theil EC (1993) Biochemistry 32:13262–13269

    CAS  PubMed  Google Scholar 

  9. Yang X, Chen-Barrett Y, Arosio P, Chasteen ND (1998) Biochemistry 37:9743–9750

    CAS  PubMed  Google Scholar 

  10. Sun S, Chasteen ND (1992) J Biol Chem 267:25160–25166

    CAS  PubMed  Google Scholar 

  11. Macara IG, Hoy TG, Harrison PM (1972) Biochem J 126:151–162

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Crichton RR, Roman F (1978) J Mol Catal 4:75–82

    CAS  Google Scholar 

  13. Bou-Abdallah F, Papaefthymiou GC, Scheswohl DM, Stanga SD, Arosio P, Chasteen ND (2002) Biochem J 364:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bauminger ER, Harrison PM, Hechel D, Hodson NW, Nowik I, Treffry A, Yewdall SJ (1993) Biochem J 296:709–719

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Treffry A, Zhao Z, Quail MA, Guest JR, Harrison PM (1995) Biochemistry 34:15204–15213

    CAS  PubMed  Google Scholar 

  16. Hwang J, Krebs C, Huynh BH, Edmondson DE, Theil EC, Penner-Hahn JE (2000) Science 287:122–125

    CAS  PubMed  Google Scholar 

  17. Pereira A, Small W, Krebs C, Tavares P, Edmondson D, Theil E, Huynh B (1998) Biochemistry 37:9871–9876

    CAS  PubMed  Google Scholar 

  18. Moenne-Loccoz P, Krebs C, Herlihy K, Edmondson D, Theil E, Huynh B, Loehr T (1999) Biochemistry 38:5290–5295

    CAS  PubMed  Google Scholar 

  19. Jameson GN, Jin W, Krebs C, Perreira AS, Tavares P, Liu X, Theil EC, Huynh BH (2002) Biochemistry 41:13435–13443

    CAS  PubMed  Google Scholar 

  20. Bou-Abdallah F, Zhao G, Mayne HR, Arosio P, Chasteen ND (2005) J Am Chem Soc 127:3885–3893

    CAS  PubMed  Google Scholar 

  21. Yang X, Chicanoe E, Stefanini S, Ilari A, Chasteen ND (2000) Biochem J 349:783–786

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang X, Chasteen ND (1999) Biochem J 338:615–618

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Treffry A, Sowerby JM, Harrison PM (1978) FEBS Lett 95:221–224

    CAS  PubMed  Google Scholar 

  24. Treffry A, Zhao Z, Quail MA, Guest JR, Harrison PM (1998) FEBS Lett 432:213–218

    CAS  PubMed  Google Scholar 

  25. Zhao G, Bou-Abdallah F, Arosio P, Levi S, Janus-Chandler C, Chasteen ND (2003) Biochemistry 42:3142–3150

    CAS  PubMed  Google Scholar 

  26. Bunker J, Lowry T, Davis G, Zhang B, Brosnahan D, Lindsay S, Costen R, Watt GD (2005) Biophys Chem 114:235–244

    CAS  PubMed  Google Scholar 

  27. Lowery TJ, Bunker J, Zhang B, Costen R, Watt GD (2004) Biophys Chem 111:173–181

    CAS  PubMed  Google Scholar 

  28. Yang X, Le Brun NE, Thomson AJ, Moore GR, Chasteen ND (2000) Biochemistry 39:4915–4923

    CAS  PubMed  Google Scholar 

  29. Watt GD, Frankel RB, Jacobs D, Heqing H, Papaefthymiou GC (1992) Biochemistry 31:5672–5679

    CAS  PubMed  Google Scholar 

  30. Zhao G, Bou-Abdallah F, Yang X, Arosio P, Chasteen ND (2001) Biochemistry 40:10832–10838

    CAS  PubMed  Google Scholar 

  31. Lindsay S, Brosnahan D, Watt GD (2001) Biochemistry 40:3340–3347

    CAS  PubMed  Google Scholar 

  32. Bergstad K, Backvall JE (1998) J Org Chem 63:6650–6655

    CAS  Google Scholar 

  33. Rosenau T, Potthast A, Kosma P (1999) Synlett 1972–1974

  34. Zhao G, Chasteen ND (2006) Anal Biochem 349:262–267

    CAS  PubMed  Google Scholar 

  35. Treffry A, Harrison PM (1979) Biochem J 181:709–716

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Watt GD, Frankel RB (1991) In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum, New York, pp 307–313

  37. Watt RK, Frankel RB, Watt GD (1992) Biochemistry 31:9673–9679

    CAS  PubMed  Google Scholar 

  38. Lindsay S, Brosnahan D, Lowery TJ Jr, Crawford K, Watt GD (2003) Biochim Biophys Acta 1621:57–66

    CAS  PubMed  Google Scholar 

  39. Polanams J, Ray AD, Watt RK (2005) Inorg Chem 44:3203–3209

    CAS  PubMed  Google Scholar 

  40. Cheng YG, Chasteen ND (1991) Biochemistry 30:2947–2953

    CAS  PubMed  Google Scholar 

  41. Gard JK, Hutton WC, Baker JA, Singh RK, Feng PC (1999) Pestic Sci 55:215–217

    CAS  Google Scholar 

  42. Beauvais LG, Lippard SJ (2005) J Am Chem Soc 127:7370–7378

    CAS  PubMed  Google Scholar 

  43. Mayer DE, Rohrer JS, Schoeller DA, Harris DC (1983) Biochemistry 22:876–880

    CAS  PubMed  Google Scholar 

  44. Hodges GR, Ingold KU (2000) Free Radical Res 33:547–550

    CAS  Google Scholar 

  45. Chen-Barrett Y, Harrison PM, Treffry A, Quail MA, Arosio P, Santambrogio P, Chasteen ND (1995) Biochemistry 34:7847–7853

    CAS  PubMed  Google Scholar 

  46. Van Dyke BR, Clopton DA, Saltman P (1996) Inorg Chim Acta 242:57–61

    Google Scholar 

  47. Murphy PA, Lin JS, Olcott HS (1974) Arch Biochem Biophys 164:776–777

    CAS  PubMed  Google Scholar 

  48. Halliwell B, Gutteridge JMC (1986) Arch Biochem Biophys 246:501–514

    CAS  PubMed  Google Scholar 

  49. Van Eden ME, Aust SD (2001) Free Radical Biol Med 31:1007–1017

    Google Scholar 

Download references

Acknowledgements

We thank Li Du for help with NMR spectroscopy and Tom Lowery for helpful discussion. This research was supported by NASA grant NCC-1-02005 and the Department of Chemistry and Biochemistry of Brigham Young University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald D. Watt.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Wilson, P.E. & Watt, G.D. Ferritin-catalyzed consumption of hydrogen peroxide by amine buffers causes the variable Fe2+ to O2 stoichiometry of iron deposition in horse spleen ferritin. J Biol Inorg Chem 11, 1075–1086 (2006). https://doi.org/10.1007/s00775-006-0141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0141-6

Keywords

Navigation