Skip to main content
Log in

Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules?

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

It has been demonstrated that the NO produced by nitric oxide synthase or by the reduction of nitrite by nitrate reductase plays an important role in plants’ defense against microbial pathogens. The detection of nitrosyl Lb in nodules strongly suggests that NO is also formed in functional nodules. Moreover, NO may react with superoxide (which has been shown to be produced in nodules by various processes), leading to the formation of peroxynitrite. We have determined the second-order rate constants of the reactions of soybean oxyleghemoglobin with nitrogen monoxide and peroxynitrite. At pH 7.3 and 20 °C, the values are on the order of 108 and 104 M−1 s−1, respectively. In the presence of physiological amounts of CO2 (1.2 mM), the second-order rate constant of the reaction of oxyleghemoglobin peroxynitrite is even larger (105 M−1 s−1). The results presented here clearly show that oxyleghemoglobin is able to scavenge any NO and peroxynitrite formed in functional nodules. This may help to stop NO triggering a plant defense reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–b
Fig. 4a–b
Fig. 5a–b
Fig. 6
Fig. 7a–b
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

EPR:

Electron paramagnetic resonance

Hb:

Human hemoglobin

Lb:

Leghemoglobin

LbFeO2 (oxyLb):

Oxyleghemoglobin

LbFeIV=O (ferrylLb):

Oxoiron(IV)-leghemoglobin

MetLb:

Iron(III)leghemoglobin

Mb:

Myoglobin

NOS:

Nitric oxide synthase

References

  1. Kubo H (1939) Acta Phytochim (Tokyo) 11:195–200

    CAS  Google Scholar 

  2. Appleby CA, Bogusz D, Dennis ES, Peacock WJ (1988) Plant Cell Environ 11:359–367

    Article  CAS  Google Scholar 

  3. Dordas C, Rivoal J, Hill RD (2003) Ann Bot 91:173–178

    Article  PubMed  CAS  Google Scholar 

  4. Davies MJ, Mathieu C, Puppo A (1999) Adv Inorg Chem 46:495–542

    Google Scholar 

  5. Hunt PW, Watts RA, Trevaskis B, Llewellyn DJ, Burnell J, Dennis ES, Peacock WJ (2001) Plant Mol Biol 47:677–692

    Article  PubMed  CAS  Google Scholar 

  6. Watts RA, Hunt PW, Hvitved AN, Hargrove MS, Peacock WJ, Dennis ES (2001) Proc Natl Acad Sci USA 98:10119–10124

    Article  PubMed  CAS  Google Scholar 

  7. Wittenberg JB, Bolognesi M, Wittenberg BA, Guertin M (2002) J Biol Chem 277:871–874

    Article  PubMed  CAS  Google Scholar 

  8. Moncada S, Palmer RMJ, Higgs EA (1991) Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  9. Alderton WK, Cooper CE, Knowles RG (2001) Biochem J 357:593–615

    Article  PubMed  CAS  Google Scholar 

  10. Beligni MV, Lamattina L (2001) Plant Cell Environ 24:267–278

    Article  CAS  Google Scholar 

  11. Wendehenne D, Durner J, Klessig DF (2004) Curr Opin Plant Biol 7:449–455

    Article  PubMed  CAS  Google Scholar 

  12. Neill S, Desikan R, Hancock JT (2003) New Phytol 159:11–35

    Article  CAS  Google Scholar 

  13. Butt YK-C, Lum JH-K, Lo SC-L (2003) Planta 216:762–771

    PubMed  CAS  Google Scholar 

  14. Yamasaki H, Sakihama Y, Takahashi S (1999) Trends Plant Sci 4:128–129

    Article  PubMed  Google Scholar 

  15. Desikan R, Griffiths R, Hancock J, Neill S (2002) Proc Natl Acad Sci USA 99:16314–16318

    Article  PubMed  CAS  Google Scholar 

  16. Meyer C, Lea US, Provan F, Kaiser WM, Lillo C (2005) Photosynth Res 83:181–189

    Article  PubMed  CAS  Google Scholar 

  17. Kaiser WM, Weiner H, Kandlbinder A, Tsai C-B, Rockel P, Sonoda M, Planchet E (2002) J Exp Bot 53:875–882

    Article  PubMed  CAS  Google Scholar 

  18. Romero-Puertas MC, Perazzolli M, Zago ED, Delledonne M (2004) Cell Microbiol 6:795–803

    Article  PubMed  CAS  Google Scholar 

  19. Durner J, Wendehenne D, Klessig DF (1998) Proc Natl Acad Sci USA 95:10328–10333

    Article  PubMed  CAS  Google Scholar 

  20. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  21. Guo F-Q, Okamoto M, Crawford NM (2003) Science 302:100–103

    Article  PubMed  CAS  Google Scholar 

  22. Herold S (2003) C R Biol 326:533–541

    Article  PubMed  CAS  Google Scholar 

  23. Poole RK (2005) Biochem Soc Trans 33:176–180

    Article  PubMed  CAS  Google Scholar 

  24. Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Plant J 35:763–770

    Article  PubMed  CAS  Google Scholar 

  25. Igamberdiev AU, Seregelyes CS, Manac’h N, Hill RD (2004) Planta 219:95–102

    Article  PubMed  CAS  Google Scholar 

  26. Zottini M, Formentin E, Scattolin M, Carimi F, Lo Schiavo F, Terzi M (2002) FEBS Lett 515:75–78

    Article  PubMed  CAS  Google Scholar 

  27. Dordas C, Hasinoff BB, Rivoal J, Hill RD (2004) Planta 219:66–72

    Article  PubMed  CAS  Google Scholar 

  28. Cueto M, Hernandez-Perera O, Martin R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) FEBS Lett 398:159–164

    Article  PubMed  CAS  Google Scholar 

  29. Meyer J (1981) Arch Biochem Biophys 210:246–256

    Article  PubMed  CAS  Google Scholar 

  30. Mathieu C, Moreau S, Frendo P, Puppo A, Davies MJ (1998) Free Radic Biol Med 24:1242–1249

    Article  PubMed  CAS  Google Scholar 

  31. Maskall CS, Gibson JF, Dart PJ (1977) Biochem J 167:435–445

    PubMed  CAS  Google Scholar 

  32. Hérouart D, Baudouin E, Frendo P, Harrison J, Santos R, Jamet A, Van de Sype G, Touati D, Puppo A (2002) Plant Physiol Biochem 40:619–624

    Article  Google Scholar 

  33. Dalton DA, Post CJ, Langeberg L (1991) Plant Physiol 96:812–818

    Article  PubMed  CAS  Google Scholar 

  34. Puppo A, Rigaud J, Job D (1981) Plant Sci Lett 22:353–360

    Article  CAS  Google Scholar 

  35. Nauser T, Koppenol WH (2002) J Phys Chem A 106:4084–4086

    Article  CAS  Google Scholar 

  36. Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A (2001) Free Radic Biol Med 30:463–488

    Article  PubMed  CAS  Google Scholar 

  37. Herold S, Shivashankar K (2003) Biochemistry 42:14036–14046

    Article  PubMed  CAS  Google Scholar 

  38. Herold S, Shivashankar K, Mehl M (2002) Biochemistry 41:13460–13472

    Article  PubMed  CAS  Google Scholar 

  39. Exner M, Herold S (2000) Chem Res Toxicol 13:287–293

    Article  PubMed  CAS  Google Scholar 

  40. Herold S, Exner M, Boccini F (2003) Chem Res Toxicol 16:390–402

    Article  PubMed  CAS  Google Scholar 

  41. Herold S, Röck G (2003) J Biol Chem 278:6623–6634

    Article  PubMed  CAS  Google Scholar 

  42. Koppenol WH, Kissner R, Beckman JS (1996) Methods Enzymol 269:296–302

    PubMed  CAS  Google Scholar 

  43. Bohle DS, Glassbrenner PA, Hansert B (1996) Methods Enzymol 269:302–311

    PubMed  CAS  Google Scholar 

  44. Rigaud J, Puppo A (1977) Biochim Biophys Acta 497:702–706

    PubMed  CAS  Google Scholar 

  45. Herold S, Puppo A (2005) J Biol Inorg Chem (this issue)

  46. Harned HS, Bonner FT (1945) J Am Chem Soc 67:1026–1031

    Article  CAS  Google Scholar 

  47. Puppo A, Rigaud J (1987) Electrophoresis 8:212–214

    Article  CAS  Google Scholar 

  48. Aviram I, Wittenberg A, Wittenberg JB (1978) J Biol Chem 253:5685–5689

    PubMed  CAS  Google Scholar 

  49. Herold S, Exner M, Nauser T (2001) Biochemistry 40:3385–3395

    Article  PubMed  CAS  Google Scholar 

  50. Olson JS, Foley EW, Rogge C, Tsai AL, Doyle ML, Lemon DD (2004) Free Radic Biol Med 36:685–697

    Article  PubMed  CAS  Google Scholar 

  51. Boccini F, Herold S (2004) Biochemistry 43:16393–16404

    Article  PubMed  CAS  Google Scholar 

  52. Everse J, Hsia N (1997) Free Radic Biol Med 22:1075–1099

    Article  PubMed  CAS  Google Scholar 

  53. Pietraforte D, Salzano AM, Scorza G, Marino G, Minetti M (2001) Biochemistry 40:15300–15309

    Article  PubMed  CAS  Google Scholar 

  54. Herold S, Kalinga S, Matsui T, Watanabe Y (2004) J Am Chem Soc 126:6945–6955

    Article  PubMed  CAS  Google Scholar 

  55. Gladwin MT, Crawford JH, Patel RP (2004) Free Radic Biol Med 36:707–717

    Article  PubMed  CAS  Google Scholar 

  56. Brunori M (2001) Trends Biochem Sci 26:209–210

    Article  PubMed  CAS  Google Scholar 

  57. Santos R, Hérouart D, Sigaud S, Touati D, Puppo A (2001) Mol Plant–Microbe Interact 14:86–89

    Article  PubMed  CAS  Google Scholar 

  58. Eich RF, Li T, Lemon DD, Doherty DH, Curry SR, Aitken JF, Mathews AJ, Johnson KA, Smith RD, Phillips GN Jr, Olson JS (1996) Biochemistry 35:6976–6983

    Article  PubMed  CAS  Google Scholar 

  59. Scott EE, Gibson QH, Olson JS (2001) J Biol Chem 276:5177–5188

    Article  PubMed  CAS  Google Scholar 

  60. Quillin ML, Li T, Olson JS, Phillips GN Jr, Dou Y, Ikeda-Saito M, Regan R, Carlson M, Gibson QH, Li H, Elber R (1995) J Mol Biol 245:416–436

    Article  PubMed  CAS  Google Scholar 

  61. Rohlfs RJ, Olson JS, Gibson QH (1988) J Biol Chem 263:1803–1813

    PubMed  CAS  Google Scholar 

  62. Olson JS, Rohlfs RJ, Gibson QH (1987) J Biol Chem 262:12930–12938

    PubMed  CAS  Google Scholar 

  63. Hargrove MS, Barry JK, Brucker EA, Berry MB, Phillips GN Jr, Olson JS, Arredondo-Peter R, Dean JM, Klucas RV, Sarath G (1997) J Mol Biol 266:1032–1042

    Article  PubMed  CAS  Google Scholar 

  64. Ollis DL, Appleby CA, Colman PM, Cutten AE, Guss JM, Venkatappa MP, Freeman HC (1983) Aust J Chem 36:451–468

    Article  CAS  Google Scholar 

  65. Lee HC, Wittenberg JB, Peisach J (1993) Biochemistry 32:11500–11506

    Article  PubMed  CAS  Google Scholar 

  66. Herold S (1999) FEBS Lett 443:81–84

    Article  PubMed  CAS  Google Scholar 

  67. Becana M, Klucas RV (1991) Plant Physiol 98:1217–1221

    Google Scholar 

  68. Downie JA (2005) Curr Biol 15:R196–R198

    Article  PubMed  CAS  Google Scholar 

  69. Hunt S, Gaito ST, Layzell DB (1988) Planta 173:128–141

    Article  CAS  Google Scholar 

  70. Lee K-K, Shearman LL, Erickson BK, Klucas RV (1995) Plant Physiol 109:261–267

    PubMed  CAS  Google Scholar 

  71. Herold S, Matsui T, Watanabe Y (2001) J Am Chem Soc 123:4085–4086

    Article  PubMed  CAS  Google Scholar 

  72. Kundu S, Hargrove MS (2003) Proteins 50:239–248

    Google Scholar 

  73. Moreau S, Davies MJ, Puppo A (1995) Biochim Biophys Acta 1251:17–22

    PubMed  Google Scholar 

  74. Ji L, Becana M, Sarath G, Shearman L, Klucas RV (1994) Plant Physiol 106:203–209

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Herold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herold, S., Puppo, A. Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules?. J Biol Inorg Chem 10, 935–945 (2005). https://doi.org/10.1007/s00775-005-0046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0046-9

Keywords

Navigation