Skip to main content
Log in

The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In [FeFe]-hydrogenases, the H cluster (hydrogen-activating cluster) contains a di-iron centre ([2Fe]H subcluster, a (L)(CO)(CN)Fe(μ-RS2)(μ-CO)Fe(CysS)(CO)(CN) group) covalently attached to a cubane iron-sulphur cluster ([4Fe-4S]H subcluster). The Cys-thiol functions as the link between one iron (called Fe1) of the [2Fe]H subcluster and one iron of the cubane subcluster. The other iron in the [2Fe]H subcluster is called Fe2. The light sensitivity of the Desulfovibrio desulfuricans enzyme in a variety of states has been studied with infrared (IR) spectroscopy. The aerobic inactive enzyme (Hinact state) and the CO-inhibited active form (Hox–CO state) were stable in light. Illumination of the Hox state led to a kind of cannibalization; in some enzyme molecules the H cluster was destroyed and the released CO was captured by the H clusters in other molecules to form the light-stable Hox–CO state. Illumination of active enzyme under 13CO resulted in the complete exchange of the two intrinsic COs bound to Fe2. At cryogenic temperatures, light induced the photodissociation of the extrinsic CO and the bridging CO of the enzyme in the Hox–CO state. Electrochemical redox titrations showed that the enzyme in the Hinact state converts to the transition state (Htrans) in a reversible one-electron redox step (E m, pH 7=–75 mV). IR spectra demonstrate that the added redox equivalent not only affects the [4Fe-4S]H subcluster, but also the di-iron centre. Enzyme in the Htrans state reacts with extrinsic CO, which binds to Fe2. The Htrans state converts irreversibly into the Hox state in a redox-dependent reaction most likely involving two electrons (E m, pH 7=–261 mV). These electrons do not end up on any of the six Fe atoms of the H cluster; the possible destiny of the two redox equivalents is discussed. An additional reversible one-electron redox reaction leads to the Hred state (E m, pH 7=–354 mV), where both Fe atoms of the [2Fe]H subcluster have the same formal oxidation state. The possible oxidation states of Fe1 and Fe2 in the various enzyme states are discussed. Low redox potentials (below –500 mV) lead to destruction of the [2Fe]H subcluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adams MWW (1990) Biochim Biophys Acta 1020:115–145

    Article  PubMed  CAS  Google Scholar 

  2. Albracht SPJ (1994) Biochim Biophys Acta 1188:167–204

    Article  PubMed  Google Scholar 

  3. Vignais PM, Billoud B, Meyer J (2001) FEMS Microbiol Rev 25:455–501

    Article  PubMed  CAS  Google Scholar 

  4. Cammack R, Frey M, Robson R (2001) Hydrogen as a fuel. Learning from nature. Taylor & Francis Inc., London

    Google Scholar 

  5. Vignais PM, Colbeau A (2004) Curr Issues Mol Biol 6:159–188

    PubMed  CAS  Google Scholar 

  6. Albracht SPJ, Roseboom W, Hatchikian EC (2006) J Biol Inorg Chem (this issue) DOI 10.1007/s00775-005-0039-8

  7. Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Structure Fold Des 7:13–23

    Article  PubMed  CAS  Google Scholar 

  8. Nicolet Y, De Lacey AL, Vernède X, Fernandez VM, Hatchikian EC, Fontecilla-Camps JC (2001) J Am Chem Soc 123:1596–1601

    Article  PubMed  CAS  Google Scholar 

  9. Fan HJ, Hall MB (2001) J Am Chem Soc 123:3828–3829

    Article  PubMed  CAS  Google Scholar 

  10. Van der Spek TM, Arendsen AF, Happe RP, Yun S, Bagley KA, Stufkens DJ, Hagen WR, Albracht SPJ (1996) Eur J Biochem 237:629–634

    Article  PubMed  Google Scholar 

  11. Pierik AJ, Hulstein M, Hagen WR, Albracht SPJ (1998) Eur J Biochem 258:572–578

    Article  PubMed  CAS  Google Scholar 

  12. De Lacey AL, Stadler C, Cavazza C, Hatchikian EC, Fernandez VM (2000) J Am Chem Soc 122:11232–11233

    Article  CAS  Google Scholar 

  13. Chen Z, Lemon BJ, Huang S, Swartz DJ, Peters JW, Bagley KA (2002) Biochemistry 41:2036–2043

    Article  PubMed  CAS  Google Scholar 

  14. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858

    Article  PubMed  CAS  Google Scholar 

  15. Voordouw G, Brenner S (1985) Eur J Biochem 148:515–520

    Article  PubMed  CAS  Google Scholar 

  16. Hatchikian EC, Forget N, Fernandez VM, Williams R, Cammack R (1992) Eur J Biochem 209:357–365

    Article  PubMed  CAS  Google Scholar 

  17. Hatchikian EC, Magro V, Forget N, Nicolet Y, Fontecilla-Camps JC (1999) J Bacteriol 181:2947–2952

    PubMed  CAS  Google Scholar 

  18. Patil DS, Moura JJ, He SH, Teixeira M, Prickril BC, DerVartanian DV, Peck HD Jr, LeGall J, Huynh BH (1988) J Biol Chem 263:18732–18738

    PubMed  CAS  Google Scholar 

  19. Pierik AJ, Hagen WR, Redeker JS, Wolbert RB, Boersma M, Verhagen MF, Grande HJ, Veeger C, Mutsaers PH, Sands RH, Dunham WR (1992) Eur J Biochem 209:63–72

    Article  PubMed  CAS  Google Scholar 

  20. Patil DS, Czechowski MH, Huynh BH, LeGall J, Peck HD Jr, DerVartanian DV (1986) Biochem Biophys Res Commun 137:1086–1093

    Article  PubMed  CAS  Google Scholar 

  21. Patil DS, Huynh BH, He SH, Peck HD Jr, DerVartanian DV, Le Gall J (1988) J Am Chem Soc 110:8533–8534

    Article  CAS  Google Scholar 

  22. Kowal AT, Adams MWW, Johnson MK (1989) J Biol Chem 264:4342–4348

    PubMed  CAS  Google Scholar 

  23. Lemon BJ, Peters JW (2000) J Am Chem Soc 122:3793–3794

    Article  CAS  Google Scholar 

  24. Kempner W, Kubowitz F (1933) Biochem Z 257:245–252

    Google Scholar 

  25. Warburg O (1946) Schwermetalle als Wirkungsgruppe von Fermenten. Verlag Dr. W. Saenger, Berlin

    Google Scholar 

  26. Thauer RK, Käufer B, Zähringer M, Jungermann K (1974) Eur J Biochem 42:447–452

    Article  PubMed  CAS  Google Scholar 

  27. Kubowitz F, Haas E (1932) Biochem Z 255:247–277

    CAS  Google Scholar 

  28. De Lacey AL, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC, Fernandez VM (1997) J Am Chem Soc 119:7181–7189

    Article  Google Scholar 

  29. Moss D, Nabedryk E, Breton J, Mantele W (1990) Eur J Biochem 187:565–572

    Article  PubMed  CAS  Google Scholar 

  30. De Lacey AL, Stadler C, Fernandez VM, Hatchikian EC, Fan HJ, Li S, Hall MB (2002) J Biol Inorg Chem 7:318–326

    Article  PubMed  CAS  Google Scholar 

  31. Pereira AS, Tavares P, Moura I, Moura JJG, Huynh BH (2001) J Am Chem Soc 123:2771–2782

    Article  PubMed  CAS  Google Scholar 

  32. Rusnak FM, Adams MW, Mortenson LE, Münck E (1987) J Biol Chem 262:38–41

    PubMed  CAS  Google Scholar 

  33. Telser J, Benecky MJ, Adams MWW, Mortenson LE, Hoffman BM (1986) J Biol Chem 261:13536–13541

    PubMed  CAS  Google Scholar 

  34. Popescu CV, Münck E (1999) J Am Chem Soc 121:7877–7884

    Article  CAS  Google Scholar 

  35. Münck E, Popescu CV (2000) Hyperfine Interact 126:59–67

    Article  Google Scholar 

  36. Cao Z, Hall MB (2001) J Am Chem Soc 123:3734–3742

    Article  PubMed  CAS  Google Scholar 

  37. Liu ZP, Hu P (2002) J Am Chem Soc 124:5175–5182

    Article  PubMed  CAS  Google Scholar 

  38. Razavet M, Davies SC, Hughes DL, Pickett CJ (2001) Chem Commun:847–848

  39. Razavet M, Borg SJ, George SJ, Best SP, Fairhurst SA, Pickett CJ (2002) Chem Commun (Camb) 700–701

  40. Darensbourg MY, Lyon EJ, Zhao X, Georgakaki IP (2003) Proc Natl Acad Sci USA 100:3683–3688

    Article  PubMed  CAS  Google Scholar 

  41. Mejia-Rodriguez R, Chong D, Reibenspies JH, Soriaga MP, Darensbourg MY (2004) J Am Chem Soc 126:12004–12014

    Article  PubMed  CAS  Google Scholar 

  42. Fiedler AT, Brunold TC (2005) Inorg Chem 44:1794–1809

    Article  PubMed  CAS  Google Scholar 

  43. Fauque G, Peck HD Jr, Moura JJ, Huynh BH, Berlier Y, DerVartanian DV, Teixeira M, Przybyla AE, Lespinat PA, Moura I et al (1988) FEMS Microbiol Rev 4:299–344

    Google Scholar 

  44. Erbes DL, Burris RH, Orme-Johnson WH (1975) Proc Natl Acad Sci USA 72:4795–4799

    Article  PubMed  CAS  Google Scholar 

  45. Coremans JMCC, van Garderen CJ, Albracht SPJ (1992) Biochim Biophys Acta 1119:148–156

    PubMed  CAS  Google Scholar 

  46. Happe RP, Roseboom W, Albracht SPJ (1999) Eur J Biochem 259:602–608

    Article  PubMed  CAS  Google Scholar 

  47. George SJ, Kurkin S, Thorneley RNF, Albracht SPJ (2004) Biochemistry 43:6808–6819

    Article  PubMed  CAS  Google Scholar 

  48. Armstrong FA, Albracht SPJ (2005) Philos Trans R Soc A 363:937–954

    Article  CAS  Google Scholar 

  49. Van der Linden E, Burgdorf T, Bernhard M, Bleijlevens B, Friedrich B, Albracht SPJ (2004) J Biol Inorg Chem 9:616–626

    Article  PubMed  CAS  Google Scholar 

  50. Fernandez VM, Munilla R, Ballesteros A (1982) Arch Biochem Biophys 215:129–135

    Article  PubMed  CAS  Google Scholar 

  51. Fernandez VM, Hatchikian EC, Cammack R (1985) Biochim Biophys Acta 832:69–79

    CAS  Google Scholar 

  52. Bleijlevens B (2001) In: Cammack R, Frey M, Robson R (eds) Hydrogen as a fuel. Learning from nature. Taylor & Francis, London, pp 82–84

  53. Bleijlevens B, van Broekhuizen FA, De Lacey AL, Roseboom W, Fernandez VM, Albracht SPJ (2004) J Biol Inorg Chem 9:743–752

    Article  PubMed  CAS  Google Scholar 

  54. Claiborne A, Yeh JI, Mallett TC, Luba J, Crane EJ, Charrier V, Parsonage D (1999) Biochemistry 38:15407–15416

    Article  PubMed  CAS  Google Scholar 

  55. Claiborne A, Mallett TC, Yeh JI, Luba J, Parsonage D (2001) Adv Protein Chem 58:215–276

    Article  PubMed  CAS  Google Scholar 

  56. Van der Westen HM, Mayhew SG, Veeger C (1978) FEBS Lett 86:122–126

    Article  PubMed  Google Scholar 

  57. Van Dijk C, Van Berkel-Arts A, Veeger C (1983) FEBS Lett 156:340–344

    Article  Google Scholar 

  58. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry. Wiley, New York

    Google Scholar 

  59. Meyer TJ, Caspar JV (1985) Chem Rev 85:187–218

    Article  CAS  Google Scholar 

  60. Stiegman AE, Tyler DR (1985) Coord Chem Rev 63:217–240

    Article  CAS  Google Scholar 

  61. Lyon EJ, Georgakaki IP, Reibenspies JH, Darensbourg MY (2001) J Am Chem Soc 123:3268–3278

    Article  PubMed  CAS  Google Scholar 

  62. Georgakaki IP, Thomson LM, Lyon EJ, Hall MB, Darensbourg MY (2003) Coord Chem Rev 238:255–266

    Article  CAS  Google Scholar 

  63. Huynh BH, Czechowski MH, Krüger HJ, DerVartanian DV, Peck HD Jr, LeGall J (1984) Proc Natl Acad Sci USA 81:3728–3732

    Article  PubMed  CAS  Google Scholar 

  64. Stephens PJ, Devlin F, McKenna MC, Morgan TV, Czechowski M, DerVartanian DV, Peck HD Jr, LeGall J (1985) FEBS Lett 180:24–28

    Article  CAS  Google Scholar 

  65. Hagen WR, Van Berkel-Arts A, Krüse-Wolters KM, Dunham WR, Veeger C (1986) FEBS Lett 201:158–162

    Article  PubMed  CAS  Google Scholar 

  66. Adams MWW, Johnson MK, Zambrano IC, Mortenson LE (1986) Biochimie 68:35–42

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon P. J. Albracht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roseboom, W., De Lacey, A.L., Fernandez, V.M. et al. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy. J Biol Inorg Chem 11, 102–118 (2006). https://doi.org/10.1007/s00775-005-0040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0040-2

Keywords

Navigation