Skip to main content
Log in

One oxidant, many pathways: a theoretical perspective of monooxygenation mechanisms by cytochrome P450 enzymes

  • Commentary
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Density functional theoretical studies of monooxygenation reactivity of the high-valent oxoiron(IV) porphyrin cation-radical compound of cytochrome P450, the so-called Compound I, and of its precursor, the ferric(III)-hydroperoxide species, are described. The degeneracy of the spin states of Compound I, its electron deficiency, and dense orbital manifold lead to two-state and multi-state reactivity scenarios and may thereby create reactivity patterns as though belonging to two or more different oxidants. Most of the controversies in the experimental data are reconciled using Compound I as the sole competent oxidant. Theory finds ferric(III)-hydroperoxide to be a very sluggish oxidant, noncompetitive with Compound I. If and when Compound I is absent, P450 oxidation will logically proceed by another form, but this has to be more reactive than ferric(III)-hydroperoxide. Theoretical studies are conducted to pinpoint such an oxidant for P450.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Scheme 4
Scheme 5

Similar content being viewed by others

Notes

  1. A possible such scenario that can be imagined is that, in the T252A mutant enzyme, water access to the pocket is essential for subsequent protonation of Cpd 0; camphor blocks water access to the protein pocket, and hence Cpd I cannot be formed, while other substrates, e.g. camphene, may allow water entrance, which thereby leads to protonation of Cpd 0 and subsequent formation of Cpd I. In the double mutant a different topography may allow water molecules even in the presence of camphor, and hence the D251N/T252A mutant is capable of camphor hydroxylation

Abbreviations

Cpd I:

Compound I

DFT:

density functional theory

MSR:

multi-state reactivity

PIE:

product isotope effect

TSR:

two-state reactivity

References

  1. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2888

    Google Scholar 

  2. Ortiz de Montellano PR, De Voss JJ (2002) Nat Prod Rep 19:1–18

    PubMed  Google Scholar 

  3. Groves JT (2003) Proc Natl Acad Sci USA 100:3569–3574

    Article  CAS  PubMed  Google Scholar 

  4. Newcomb M, Toy PH (2000) Acc Chem Res 33:449–455

    Article  CAS  PubMed  Google Scholar 

  5. Davydov R, Makris TM, Kofman V, Werst DE, Sligar SG, Hoffman BM (2001) J Am Chem Soc 123:1403–1415

    Article  CAS  PubMed  Google Scholar 

  6. Kellner DG, Hung S-C, Weiss KE, Sligar SG (2002) J Biol Chem 277:9641–9644

    Article  CAS  PubMed  Google Scholar 

  7. Rutter R, Hager LP, Dhonau H, Hendrich M, Valentine M, Debrunner P (1984) Biochemistry 23:6809–6816

    CAS  PubMed  Google Scholar 

  8. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Pestko GA, Sligar SG (2000) Science 287:1615–1622

    Article  CAS  PubMed  Google Scholar 

  9. Jin S, Markis TM, Bryson TA, Sligar SG, Dawson JH (2003) J Am Chem Soc 125:3406–3407

    Article  CAS  PubMed  Google Scholar 

  10. Hishiki T, Shimada H, Nagano S, Egawa T, Kanamori Y, Makino R, Park SY, Adachi SI, Shiro Y, Ishimiura Y (2000) J Biochem (Tokyo) 128:965–974

    Google Scholar 

  11. Siegbahn PEM, Blomberg MRA (2000) Chem Rev 100:421–438

    Article  CAS  PubMed  Google Scholar 

  12. Shaik S, Cohen S, de Visser SP, Sharma PK, Kumar D, Kozuch S, Ogliaro F, Danovich D (2004) Eur J Inorg Chem 207–226

  13. Ogliaro F, Harris N, Cohen S, Filatov M, de Visser SP, Shaik S (2000) J Am Chem Soc 122:8977–8989

    Article  CAS  Google Scholar 

  14. de Visser SP, Ogliaro F, Shaik S (2001) Angew Chem Int Ed 40:2871–2874

    Article  Google Scholar 

  15. de Visser SP, Kumar D, Shaik S (2004) J Inorg Biochem 98:1183–1193

    Article  PubMed  Google Scholar 

  16. Ogliaro F, de Visser SP, Cohen S, Sharma PK, Shaik S (2002) J Am Chem Soc 124:2806–2817

    Article  CAS  PubMed  Google Scholar 

  17. Kamachi T, Shiota Y, Yoshizawa K (2003) Bull Chem Soc Jpn 76:721–732

    Article  CAS  Google Scholar 

  18. Sharma PK, de Visser SP, Shaik S (2003) J Am Chem Soc 125:8698–8699

    Article  CAS  PubMed  Google Scholar 

  19. Harris DL (2001) Curr Opin Chem Biol 5:724–735

    Article  CAS  PubMed  Google Scholar 

  20. Schöneboom JC, Lin H, Reuter N, Thiel W, Cohen S, Ogliaro F, Shaik S (2002) J Am Chem Soc 124:8142–8151

    Article  PubMed  Google Scholar 

  21. Schöneboom JC, Cohen S, Lin H, Shaik S, Thiel W (2004) J Am Chem Soc 126:4017–4034

    Article  PubMed  Google Scholar 

  22. Groves JT, McClusky GA, White RE, Coon MJ (1978) Biochem Biophys Res Commun 81:154–160

    CAS  PubMed  Google Scholar 

  23. Traylor TG, Hill KW, Fan W-P, Tsuchiya S, Dunlap BE (1992) J Am Chem Soc 114:1308–1312

    CAS  Google Scholar 

  24. Kumar D, de Visser SP, Sharma PK, Cohen S, Shaik S (2004) J Am Chem Soc 126:1907–1920

    CAS  PubMed  Google Scholar 

  25. Newcomb M, Aebisher D, Shen R, Chandrasena REP, Hollenberg PF, Coon MJ (2003) J Am Chem Soc 125:6064–6065

    Article  CAS  PubMed  Google Scholar 

  26. Audergon C, Iyer KR, Jones JP, Darbyshire JF, Trager WT (1999) J Am Chem Soc 121:41–47

    Article  CAS  Google Scholar 

  27. de Visser SP, Shaik S (2003) J Am Chem Soc 125:7413–7424

    Article  PubMed  Google Scholar 

  28. Chandrasena REP, Vatsis KP, Coon MJ, Hollenberg PF, Newcomb M (2004) J Am Chem Soc 126:115–126

    CAS  PubMed  Google Scholar 

  29. Nam W, Lee HJ, Oh S-Y, Kim, C, Jang HG (2000) J Inorg Biochem 80:219–225

    Article  CAS  PubMed  Google Scholar 

  30. Kaizer J, Klinker EJ, Oh NY, Rhode J-U, Song WJ, Stubna A, Kim J, Munck E, Nam W, Que L Jr (2004) J Am Chem Soc 126:472–473

    Article  CAS  PubMed  Google Scholar 

  31. Nam W, Park S-E, Kim IK, Lim MH, Hong J, Kim J (2003) J Am Chem Soc 125:14674–14675

    Article  CAS  PubMed  Google Scholar 

  32. Schünemann V, Jung C, Terner J, Trautwein AX, Weiss R (2002) J Inorg Biochem 91:586–596

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by an ISF grant. J. Jones is thanked for instructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sason Shaik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaik, S., de Visser, S.P. & Kumar, D. One oxidant, many pathways: a theoretical perspective of monooxygenation mechanisms by cytochrome P450 enzymes. J Biol Inorg Chem 9, 661–668 (2004). https://doi.org/10.1007/s00775-004-0576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0576-6

Keywords

Navigation