Skip to main content

Advertisement

Log in

Nonalcoholic fatty liver disease and osteoporosis: a systematic review and meta-analysis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Several major risk factors for osteoporosis have been identified. One of these risk factors is chronic inflammation. Several recent studies have supported the association between low bone mineral density (BMD) and nonalcoholic fatty liver disease (NAFLD), which comprises a spectrum of disorders involving liver inflammation. However, conflicting evidence regarding this association has been obtained thus far. We, therefore, conducted a meta-analysis of observational studies to show the association between NAFLD and BMD. The Cochrane Central Register of Controlled Trials, Cochrane Library, Medline, and Embase were searched from database inception to November 2014 for all observational studies evaluating the association between NAFLD or nonalcoholic steatohepatitis (NASH) and bone mass, BMD, or osteoporosis. All patients were ≥18 years of age and had no other cause of liver disease, osteoporosis, or pathological bone disease at baseline. Risk factors were NAFLD and NASH; control subjects were individuals without NAFLD. Eleven articles underwent full-length review. Data were extracted from five cross-sectional studies involving 1276 participants; 638 had NAFLD. The main meta-analysis showed no significant difference in BMD between patients with fatty liver disease and controls. Among all variables analyzed, body mass index had the strongest and most significant predictive effect on the difference in BMD. Controversy exists regarding the effect of BMD on NAFLD. Further studies are required to fully show this relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  2. Sanchez-Riera L, Carnahan E, Vos T, Veerman L, Norman R, Lim SS et al (2014) The global burden attributable to low bone mineral density. Ann Rheum Dis 73:1635–1645

    Article  CAS  PubMed  Google Scholar 

  3. NIH Consensus Development Panel on Osteoporosis Prevention (2001) Diagnosis, and therapy. osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Article  Google Scholar 

  4. Smith BJ, Lerner MR, Bu SY, Lucas EA, Hanas JS, Lightfoot SA et al (2006) Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone 38:378–386

    Article  CAS  PubMed  Google Scholar 

  5. Kotake S, Udagawa N, Hakoda M, Mogi M, Yano K, Tsuda E et al (2001) Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthr Rheum 44:1003–1012

    Article  CAS  Google Scholar 

  6. Bernstein CN, Leslie WD, Taback SP (2003) Bone density in a population-based cohort of premenopausal adult women with early onset inflammatory bowel disease. Am J Gastroenterol 98:1094–1100

    Article  PubMed  Google Scholar 

  7. Mann ST, Stracke H, Lange U, Klor HU, Teichmann J (2003) Alterations of bone mineral density and bone metabolism in patients with various grades of chronic pancreatitis. Metabolism 52:579–585

    Article  CAS  PubMed  Google Scholar 

  8. Uaratanawong S, Deesomchoke U, Lertmaharit S, Uaratanawong S (2003) Bone mineral density in premenopausal women with systemic lupus erythematosus. J Rheumatol 30:2365–2368

    PubMed  Google Scholar 

  9. Smith BW, Adams LA (2011) Non-alcoholic fatty liver disease. Crit Rev Clin Lab Sci 48:97–113

    Article  CAS  PubMed  Google Scholar 

  10. Moon SS, Lee YS, Kim SW (2012) Association of nonalcoholic fatty liver disease with low bone mass in postmenopausal women. Endocrine 42:423–429

    Article  CAS  PubMed  Google Scholar 

  11. Pardee PE, Dunn W, Schwimmer JB (2012) Non-alcoholic fatty liver disease is associated with low bone mineral density in obese children. Aliment Pharmacol Ther 35:248–254

    Article  CAS  PubMed  Google Scholar 

  12. Purnak T, Beyazit Y, Ozaslan E, Efe C, Hayretci M (2012) The evaluation of bone mineral density in patients with nonalcoholic fatty liver disease. Wien Klin Wochenschr 124:526–531

    Article  CAS  PubMed  Google Scholar 

  13. Cui R, Sheng H, Rui XF, Cheng XY, Sheng CJ, Wang JY et al (2013) Low bone mineral density in Chinese adults with nonalcoholic fatty liver disease. Int J Endocrinol 2013:396545

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thrailkill KM, Lumpkin CK Jr, Bunn RC, Kemp SF, Fowlkes JL (2005) Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 289:E735–E745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boonchaya-anant P, Hardy E, Borg BB, Burshell AL (2013) Bone mineral density in patients with nonalcoholic steatohepatitis among end-stage liver disease patients awaiting liver transplantation. Endocr Pract 19:414–419

    Article  PubMed  Google Scholar 

  16. Kaya M, Isik D, Bestas R, Evliyaoglu O, Akpolat V, Buyukbayram H et al (2013) Increased bone mineral density in patients with non-alcoholic steatohepatitis. World J Hepatol 5:627–634

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA 283:2008–2012

    Article  CAS  PubMed  Google Scholar 

  18. Stang A (2010) Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605

    Article  PubMed  Google Scholar 

  19. Sterne JA, Egger M (2001) Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 54:1046–1055

    Article  CAS  PubMed  Google Scholar 

  20. Bhatt SP, Nigam P, Misra A, Guleria R, Qadar Pasha MA (2013) Independent associations of low 25 hydroxy vitamin D and high parathyroid hormonal levels with nonalcoholic fatty liver disease in Asian Indians residing in north India. Atherosclerosis 230:157–163

    Article  CAS  PubMed  Google Scholar 

  21. Kim HY, Choe JW, Kim HK, Bae SJ, Kim BJ, Lee SH et al (2010) Negative association between metabolic syndrome and bone mineral density in Koreans, especially in men. Calcif Tissue Int 86:350–358

    Article  CAS  PubMed  Google Scholar 

  22. Manco M, Marcellini M, Giannone G, Nobili V (2007) Correlation of serum TNF-alpha levels and histologic liver injury scores in pediatric nonalcoholic fatty liver disease. Am J Clin Pathol 127:954–960

    Article  CAS  PubMed  Google Scholar 

  23. Targher G, Bertolini L, Scala L, Cigolini M, Zenari L, Falezza G et al (2007) Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 17:517–524

    Article  CAS  PubMed  Google Scholar 

  24. Maimoun L, Sultan C (2011) Effects of physical activity on bone remodeling. Metabolism 60:373–388

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anawin Sanguankeo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent.

Appendix: search strategy

Appendix: search strategy

MEDLINE

  1. 1.

    exp osteoporosis/

  2. 2.

    osteopenia.mp.

  3. 3.

    bone density.mp.

  4. 4.

    bone mass.mp.

  5. 5.

    bone loss.mp.

  6. 6.

    BMD.mp.

  7. 7.

    1 or 2 or 3 or 4 or 5 or 6

  8. 8.

    non*alcoholic fatty liver.mp.

  9. 9.

    non alcoholic fatty liver.mp.

  10. 10.

    nonalcoholic fatty liver.mp.

  11. 11.

    NAFL*.mp.

  12. 12.

    exp Fatty Liver/or NASH.mp.

  13. 13.

    steatohepatitis.mp.

  14. 14.

    8 or 9 or 10 or 11 or 12 or 13

  15. 15.

    7 and 14

Embase

(((“osteoporosis”/exp or “osteoporosis” and [embase]/lim) or (osteopenia and [embase]/lim) or (“bone density” and [embase]/lim) or (“bone mass” and [embase]/lim) or (“bone loss” and [embase]/lim)) or (bmd and [embase]/lim)) and ((“fatty liver”/exp and [embase]/lim) or (“non alcoholic fatty liver”/exp and [embase]/lim) or (“nonalcoholic fatty liver” and [embase]/lim) or (nafl* and [embase]/lim) or (nash and [embase]/lim) or (“steatohepatitis” and [embase]/lim))

CENTRAL

#1:

MeSH descriptor [Osteoporosis] explode all trees

#2:

Osteoporosis

#3:

Osteopenia

#4:

Bone density

#5:

Bone mass

#6:

Bone loss

#7:

BMD

#8:

#1 or #2 or #3 or #4 or #5 or #6 #7

#9:

Non*alcoholic fatty liver

#10:

Non alcoholic fatty liver

#11:

Nonalcoholic fatty liver

#12:

NAFL*

#13:

NASH

#14:

Steatohepatitis

#15:

MeSH descriptor [Fatty Liver] explode all trees

#16:

#9 or #10 or #11 or #12 or #13 or #14 or #15

#17:

#8 and #16

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upala, S., Jaruvongvanich, V., Wijarnpreecha, K. et al. Nonalcoholic fatty liver disease and osteoporosis: a systematic review and meta-analysis. J Bone Miner Metab 35, 685–693 (2017). https://doi.org/10.1007/s00774-016-0807-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-016-0807-2

Keywords

Navigation