Skip to main content

Advertisement

Log in

Skeletal deterioration following ovarian failure: can some features be a direct consequence of estrogen loss while others are more related to physical inactivity?

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Findings on experimental animals show that ovarian failure is a ccompanied by a decrease in motor activity. As mechanical loading has a vital role in the maintenance of skeletal health, our aim was to determine to what extent this decrease in motor activity contributes to ovariectomy-induced bone loss. Thirty-two female Wistar rats were ovariectomized or sham-operated and housed in standard cages or with access to running wheels for 36 weeks with their running distance monitored. Markers of bone turnover were assayed in the serum, and bone geometry, trabecular and cortical bone microarchitecture, mineralization degree, and biomechanical properties were assessed in the femur. Differences between groups were determined by one-way ANOVA. Although reduced motor activity and sex steroid deficiency both resulted in decreases in trabecular bone volume, trabecular number decreases were mostly associated with sex steroid deficiency, whereas trabecular thickness decreases were mostly associated with sedentary behavior. Cortical bone appeared to be more sensitive to variations in motor activity, whereas bone turnover rate and bone tissue mineralization degree seemed to be primarily affected by sex steroid deficiency, even though they were further aggravated by sedentary behavior. Increases in femur length were mostly a consequence of sex steroid deficiency, whereas femoral neck length was also influenced by sedentary behavior. Differences in mechanical properties resulted mostly from differences in physical activity. Both the direct effect of sex steroid deficiency and the indirect effect of motor activity changes are implicated in bone loss following ovariectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khosla S, Melton LJ, Riggs BL (2011) The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res 26:441–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Khosla S (2012) Pathogenesis of age-related bone loss in humans. J Gerontol A Biol Sci Med Sci 68:1226–1235

    Article  PubMed Central  PubMed  Google Scholar 

  3. Gorzek JF, Hendrickson KC, Forstner JP, Rixen JL, Moran AL, Lowe DA (2007) Estradiol and tamoxifen reverse ovariectomy-induced physical inactivity in mice. Med Sci Sports Exerc 39:248–256

    Article  CAS  PubMed  Google Scholar 

  4. Frye CA, Walf AA, Rhodes ME, Harney JP (2004) Progesterone enhances motor, anxiolytic, analgesic, and antidepressive behavior of wild-type mice, but not those deficient in type 1 5α-reductase. Brain Res 1004:116–124

    Article  CAS  PubMed  Google Scholar 

  5. Shimomura Y, Shimizu H, Takahashi M, Sato N, Uehara Y, Fukatsu A, Negishi M, Kobayashi I, Kobayashi S (1990) The significance of decreased ambulatory activity during the generation by long-term observation of obesity in ovariectomized rats. Physiol Behav 47:155–159

    Article  CAS  PubMed  Google Scholar 

  6. Cushing BS, Marhenke S, McClure PA (1995) Estradiol concentration and the regulation of locomotor activity. Physiol Behav 58:953–957

    Article  CAS  PubMed  Google Scholar 

  7. Anantharaman-Barr HG, Decombaz J (1989) The effect of wheel running and the estrous cycle on energy expenditure in female rats. Physiol Behav 46:259–263

    Article  CAS  PubMed  Google Scholar 

  8. Hunnell NA, Rockcastle NJ, McCormick KN, Sinko LK, Sullivan EL, Cameron JL (2007) Physical activity of adult female rhesus monkeys (Macaca mulatta) across the menstrual cycle. Am J Physiol Endocrinol Metab 292:E1520–E1525

    Article  CAS  PubMed  Google Scholar 

  9. Chrisler JC, McCool HR (1991) Activity level across the menstrual cycle. Percept Mot Skills 72:794

    Article  CAS  PubMed  Google Scholar 

  10. Stenn PG, Klinge V (1972) Relationship between the menstrual cycle and bodily activity in humans. Horm Behav 3:297–305

    Article  Google Scholar 

  11. Musatov S, Chen W, Pfaff DW, Mobbs CV, Yang XJ, Clegg DJ, Kaplitt MG, Ogawa S (2007) Silencing of estrogen receptor alpha in the ventromedial nucleus of hypothalamus leads to metabolic syndrome. Proc Natl Acad Sci U S A 104:2501–2506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ellman R, Spatz J, Cloutier A, Palme R, Christiansen BA, Bouxsein ML (2013) Partial reductions in mechanical loading yield proportional changes in bone density, bone architecture, and muscle mass. J Bone Miner Res 28:875–885

    Article  PubMed Central  PubMed  Google Scholar 

  13. Melton LJ, Riggs BL, Achenbach SJ, Amin S, Camp JJ, Rouleau PA, Robb RA, Oberg AL, Khosla S (2006) Does reduced skeletal loading account for age-related bone loss? J Bone Miner Res 21:1847–1855

    Article  PubMed  Google Scholar 

  14. Miyagawa K, Kozai Y, Ito Y, Furuhama T, Naruse K, Nonaka K, Nagai Y, Yamato H, Kashima I, Ohya K, Aoki K, Mikuni-Takagaki Y (2011) A novel underuse model shows that inactivity but not ovariectomy determines the deteriorated material properties and geometry of cortical bone in the tibia of adult rats. J Bone Miner Metab 29:422–436

    Article  PubMed Central  PubMed  Google Scholar 

  15. Pajamaki I, Sievanen H, Kannus P, Jokihaara J, Vuohelainen T, Jarvinen TL (2008) Skeletal effects of estrogen and mechanical loading are structurally distinct. Bone 43:748–757

    Article  PubMed  Google Scholar 

  16. Maimoun L, Brennan-Speranza TC, Rizzoli R, Ammann P (2012) Effects of ovariectomy on the changes in microarchitecture and material level properties in response to hind leg disuse in female rats. Bone 51:586–591

    Article  PubMed  Google Scholar 

  17. Chappard C, Bousson V, Bergot C, Mitton D, Marchadier A, Moser T, Benhamou CL, Laredo JD (2010) Prediction of femoral fracture load: cross-sectional study of texture analysis and geometric measurements on plain radiographs versus bone mineral density. Radiology 255:536–543

    Article  PubMed  Google Scholar 

  18. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  19. Monro PP, Purrier BJ, Shearer JR (1987) Use of histological samples for assessing skeletal calcium. J Clin Pathol 40:50–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Peng Z, Tuukkanen J, Vaananen HK (1994) Exercise can provide protection against bone loss and prevent the decrease in mechanical strength of femoral neck in ovariectomized rats. J Bone Miner Res 9:1559–1564

    Article  CAS  PubMed  Google Scholar 

  21. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  22. Barengolts EI, Curry DJ, Bapna MS, Kukreja SC (1993) Effects of endurance exercise on bone mass and mechanical properties in intact and ovariectomized rats. J Bone Miner Res 8:937–942

    Article  CAS  PubMed  Google Scholar 

  23. Iwamoto J, Takeda T, Ichimura S (1998) Effects of moderate intensity exercise on tibial bone mass in mature ovariectomized rats: bone histomorphometry study. Keio J Med 47:162–167

    Article  CAS  PubMed  Google Scholar 

  24. Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L (2003) Endocrinology: bone adaptation requires oestrogen receptor-α. Nature 424:389

    Article  CAS  PubMed  Google Scholar 

  25. Thomas DK, Storlien LH, Bellingham WP, Gillette K (1986) Ovarian hormone effects on activity, glucoregulation and thyroid hormones in the rat. Physiol Behav 36:567–573

    Article  CAS  PubMed  Google Scholar 

  26. Konhilas JP, Widegren U, Allen DL, Paul AC, Cleary A, Leinwand LA (2005) Loaded wheel running and muscle adaptation in the mouse. Am J Physiol Heart Circ Physiol 289:H455–H465

    Article  CAS  PubMed  Google Scholar 

  27. Ishihara A, Roy RR, Ohira Y, Ibata Y, Edgerton VR (1998) Hypertrophy of rat plantaris muscle fibers after voluntary running with increasing loads. J Appl Physiol 84:2183–2189

    CAS  PubMed  Google Scholar 

  28. Bosco C, Zanon S, Rusko H, Dal Monte A, Bellotti P, Latteri F, Candeloro N, Locatelli E, Azzaro E, Pozzo R et al (1984) The influence of extra load on the mechanical behavior of skeletal muscle. Eur J Appl Physiol Occup Physiol 53:149–154

    Article  CAS  PubMed  Google Scholar 

  29. Rusko H, Bosco CC (1987) Metabolic response of endurance athletes to training with added load. Eur J Appl Physiol Occup Physiol 56:412–418

    Article  CAS  PubMed  Google Scholar 

  30. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694

    Article  CAS  PubMed  Google Scholar 

  31. Boivin G, Meunier PJ (2002) Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res 43:535–537

    Article  CAS  PubMed  Google Scholar 

  32. Wang Q, Teo JW, Ghasem-Zadeh A, Seeman E (2009) Women and men with hip fractures have a longer femoral neck moment arm and greater impact load in a sideways fall. Osteoporos Int 20:1151–1156

    Article  CAS  PubMed  Google Scholar 

  33. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334

    Article  PubMed  Google Scholar 

  34. Ito M, Nishida A, Nakamura T, Uetani M, Hayashi K (2002) Differences of three-dimensional trabecular microstructure in osteopenic rat models caused by ovariectomy and neurectomy. Bone 30:594–598

    Article  CAS  PubMed  Google Scholar 

  35. Manolagas SC, O’Brien CA, Almeida M (2013) The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol 9:699–712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Armstrong VJ, Muzylak M, Sunters A, Zaman G, Saxon LK, Price JS, Lanyon LE (2007) Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J Biol Chem 282:20715–20727

    Article  CAS  PubMed  Google Scholar 

  37. Jarvinen TLN, Kannus P, Pajamaki I, Vuohelainen T, Tuukkanen J, Jarvinen A, Sievanen H (2003) Estrogen deposits extra mineral into bones of female rats in puberty, but simultaneously seems to suppress the responsiveness of female skeleton to mechanical loading. Bone 32:642–651

    Article  CAS  PubMed  Google Scholar 

  38. Martyn-St James M, Carroll S (2009) A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med 43:898–908

    Article  CAS  PubMed  Google Scholar 

  39. Hamrick MW, Skedros JG, Pennington C, McNeil PL (2006) Increased osteogenic response to exercise in metaphyseal versus diaphyseal cortical bone. J Musculoskelet Neuronal Interact 6:258–263

    CAS  PubMed  Google Scholar 

  40. You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, Kingery W, Malone AM, Kwon RY, Jacobs CR (2008) Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone 42:172–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Tan SD, de Vries TJ, Kuijpers-Jagtman AM, Semeins CM, Everts V, Klein-Nulend J (2007) Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41:745–751

    Article  CAS  PubMed  Google Scholar 

  42. Barengolts EI, Curry DJ, Bapna MS, Kukreja SC (1993) Effects of two non-endurance exercise protocols on established bone loss in ovariectomized adult rats. Calcif Tissue Int 52:239–243

    Article  CAS  PubMed  Google Scholar 

  43. Wronski TJ, Schenck PA, Cintron M, Walsh CC (1987) Effect of body weight on osteopenia in ovariectomized rats. Calcif Tissue Int 40:155–159

    Article  CAS  PubMed  Google Scholar 

  44. De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  45. Crepaldi G, Romanato G, Tonin P, Maggi S (2007) Osteoporosis and body composition. J Endocrinol Invest 30:42–47

    Article  CAS  PubMed  Google Scholar 

  46. Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23:17–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Baker JF, Davis M, Alexander R, Zemel BS, Mostoufi-Moab S, Shults J, Sulik M, Schiferl DJ, Leonard MB (2013) Associations between body composition and bone density and structure in men and women across the adult age spectrum. Bone 53:34–41

    Article  PubMed Central  PubMed  Google Scholar 

  48. Jiang JM, Sacco SM, Ward WE (2008) Ovariectomy-induced hyperphagia does not modulate bone mineral density or bone strength in rats. J Nutr 138:2106–2110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Celeste Resende and Teresa Caldeira for their technical assistance and Robert Berry for kindly reviewing the manuscript. This work was funded by Portuguese Foundation of Science and Technology (FTC) grants PTDC/DES/103047/2008 and PTDC/DES/104567/2008 and scholarships SFRH/BPD/78259/2011 and SFRH/BPD/90010/2012. The Research Centre on Physical Activity Health and Leisure (CIAFEL) is supported by Pest-OE/SAU/UI0617/2011.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélder Fonseca.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, H., Moreira-Gonçalves, D., Amado, F. et al. Skeletal deterioration following ovarian failure: can some features be a direct consequence of estrogen loss while others are more related to physical inactivity?. J Bone Miner Metab 33, 605–614 (2015). https://doi.org/10.1007/s00774-014-0626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0626-2

Keywords

Navigation