Skip to main content
Log in

Teriparatide is safe and effectively increases bone biomarkers in institutionalized individuals with osteoporosis

  • Short Communication
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Institutionalized adults with severe developmental disabilities have a high rate of minimal trauma and appendicular fracture. There is little information about osteoporosis treatment in this population. In this efficacy and safety study, men and women with severe developmental disabilities and osteoporosis received 20 mcg teriparatide subcutaneously daily for 18–24 months. Markers of bone formation [procollagen type 1 intact N-terminal propeptide (P1NP)] and resorption [C-telopeptide (CTx)] were measured at three-month intervals. Serum calcium was measured at two-week intervals for 12 weeks and thereafter at three-month intervals. Twenty-seven individuals received at least one injection. The incidence of hypercalcemia was 11.1% but was persistent and led to medication discontinuation in only one participant. Biomarkers of bone formation increased rapidly, doubling by three months. At 12 months, P1NP and CTx remained elevated from baseline; P1NP had risen from 66.95 ± 83.71 μg/l (mean ± SD) to 142.42 ± 113.85 μg/l (P = 0.05), and CTx had increased from 0.377 ± 0.253 to 1.016 ± 1.048 ng/ml (P = 0.01). The majority of participants had an increase in P1NP of over 10 μg/l. In conclusion, teriparatide is safe and effective in developmentally disabled institutionalized adults. Serial calcium measurements are warranted, particularly during the first three months of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Ryder KM, Williams J, Womack C, Nayak NG, Nasef S, Bush A, Tylavsky FA, Carbone L (2003) Appendicular fractures: a significant problem among institutionalized adults with developmental disabilities. Am J Ment Retard 108:340–346

    Article  CAS  PubMed  Google Scholar 

  2. Leslie WD, Pahlavan PS, Tsang JF, Lix LM (2009) Prediction of hip and other osteoporotic fractures from hip geometry in a large clinical cohort. Osteoporos Int

  3. Nilsson OS, Lindholm TS, Elmstedt E, Lindback A, Lindholm TC (1986) Fracture incidence and bone disease in epileptics receiving long-term anticonvulsant drug treatment. Arch Orthop Trauma Surg 105:146–149

    Article  CAS  PubMed  Google Scholar 

  4. Tyler CV Jr, Snyder CW, Zyzanski S (2000) Screening for osteoporosis in community-dwelling adults with mental retardation. Ment Retard 38:316–321

    Article  PubMed  Google Scholar 

  5. Jiang SD, Jiang LS, Dai LY (2006) Mechanisms of osteoporosis in spinal cord injury. Clin Endocrinol (Oxf) 65:555–565

    Article  CAS  Google Scholar 

  6. Reilly S, Skuse D, Poblete X (1996) Prevalence of feeding problems and oral motor dysfunction in children with cerebral palsy: a community survey. J Pediatr 129:877–882

    Article  CAS  PubMed  Google Scholar 

  7. Li CY, Price C, Delisser K, Nasser P, Laudier D, Clement M, Jepsen KJ, Schaffler MB (2005) Long-term disuse osteoporosis seems less sensitive to bisphosphonate treatment than other osteoporosis. J Bone Miner Res 20:117–124

    Article  CAS  PubMed  Google Scholar 

  8. Zehnder Y, Risi S, Michel D, Knecht H, Perrelet R, Kraenzlin M, Zach GA, Lippuner K (2004) Prevention of bone loss in paraplegics over 2 years with alendronate. J Bone Miner Res 19:1067–1074

    Article  CAS  PubMed  Google Scholar 

  9. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, Christiansen C, Delmas PD, Zanchetta JR, Stakkestad J, Gluer CC, Krueger K, Cohen FJ, Eckert S, Ensrud KE, Avioli LV, Lips P, Cummings SR (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple outcomes of raloxifene evaluation (MORE) investigators. JAMA 282:637–645

    Article  CAS  PubMed  Google Scholar 

  10. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA 288:321–333

    Article  CAS  PubMed  Google Scholar 

  11. Turner RT, Evans GL, Lotinun S, Lapke PD, Iwaniec UT, Morey-Holton E (2007) Dose–response effects of intermittent PTH on cancellous bone in hindlimb unloaded rats. J Bone Miner Res 22:64–71

    Article  CAS  PubMed  Google Scholar 

  12. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  13. DeVivo MJ, Fine PR, Cutter GR, Maetz HM (1984) The risk of renal calculi in spinal cord injury patients. J Urol 131:857–860

    CAS  PubMed  Google Scholar 

  14. Chen P, Satterwhite JH, Licata AA, Lewiecki EM, Sipos AA, Misurski DM, Wagman RB (2005) Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res 20:962–970

    Article  CAS  PubMed  Google Scholar 

  15. Greenspan SL, Bone HG, Ettinger MP, Hanley DA, Lindsay R, Zanchetta JR, Blosch CM, Mathisen AL, Morris SA, Marriott TB (2007) Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med 146:326–339

    PubMed  Google Scholar 

  16. Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM (2003) The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349:1216–1226

    Article  CAS  PubMed  Google Scholar 

  17. Damilakis J, Perisinakis K, Gourtsoyiannis N (2001) Imaging ultrasonometry of the calcaneus: optimum T-score thresholds for the identification of osteoporotic subjects. Calcif Tissue Int 68:219–224

    Article  CAS  PubMed  Google Scholar 

  18. Cosman F, Nieves J, Woelfert L, Formica C, Gordon S, Shen V, Lindsay R (2001) Parathyroid hormone added to established hormone therapy: effects on vertebral fracture and maintenance of bone mass after parathyroid hormone withdrawal. J Bone Miner Res 16:925–931

    Article  CAS  PubMed  Google Scholar 

  19. Deal C, Omizo M, Schwartz EN, Eriksen EF, Cantor P, Wang J, Glass EV, Myers SL, Krege JH (2005) Combination teriparatide and raloxifene therapy for postmenopausal osteoporosis: results from a 6-month double-blind placebo-controlled trial. J Bone Miner Res 20:1905–1911

    Article  CAS  PubMed  Google Scholar 

  20. Polednak AP (1975) Respiratory disease mortality in an institutionalised mentally retarded population. J Ment Defic Res 19:165–172

    CAS  PubMed  Google Scholar 

  21. Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry: scientific review. JAMA 288:1889–1897

    Article  PubMed  Google Scholar 

  22. Eastell R, Krege JH, Chen P, Glass EV, Reginster JY (2006) Development of an algorithm for using PINP to monitor treatment of patients with teriparatide. Curr Med Res Opin 22:61–66

    Article  CAS  PubMed  Google Scholar 

  23. Gallagher JC, Rosen CJ, Chen P, Misurski DA, Marcus R (2006) Response rate of bone mineral density to teriparatide in postmenopausal women with osteoporosis. Bone 39:1268–1275

    Article  CAS  PubMed  Google Scholar 

  24. Miyauchi A, Matsumoto T, Shigeta H, Tsujimoto M, Thiebaud D, Nakamura T (2008) Effect of teriparatide on bone mineral density and biochemical markers in Japanese women with postmenopausal osteoporosis: a 6-month dose–response study. J Bone Miner Metab 26:624–634

    Article  CAS  PubMed  Google Scholar 

  25. Langdahl BL, Marin F, Shane E, Dobnig H, Zanchetta JR, Maricic M, Krohn K, See K, Warner MR (2009) Teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: an analysis by gender and menopausal status. Osteoporos Int

  26. Gilchrist NL, Frampton CM, Acland RH, Nicholls MG, March RL, Maguire P, Heard A, Reilly P, Marshall K (2007) Alendronate prevents bone loss in patients with acute spinal cord injury: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 92:1385–1390

    Article  CAS  PubMed  Google Scholar 

  27. Watanabe Y, Ohshima H, Mizuno K, Sekiguchi C, Fukunaga M, Kohri K, Rittweger J, Felsenberg D, Matsumoto T, Nakamura T (2004) Intravenous pamidronate prevents femoral bone loss and renal stone formation during 90-day bed rest. J Bone Miner Res 19:1771–1778

    Article  CAS  PubMed  Google Scholar 

  28. Delmas PD, Licata AA, Reginster JY, Crans GG, Chen P, Misurski DA, Wagman RB, Mitlak BH (2006) Fracture risk reduction during treatment with teriparatide is independent of pretreatment bone turnover. Bone 39:237–243

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Michaud K, Nayak S, Karpf DB, Owens DK, Garber AM (2006) The cost-effectiveness of therapy with teriparatide and alendronate in women with severe osteoporosis. Arch Intern Med 166:1209–1217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by K23 RR16047 and Eli Lilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn M. Ryder.

About this article

Cite this article

Ryder, K.M., Bobo Tanner, S., Carbone, L. et al. Teriparatide is safe and effectively increases bone biomarkers in institutionalized individuals with osteoporosis. J Bone Miner Metab 28, 233–239 (2010). https://doi.org/10.1007/s00774-009-0123-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-009-0123-1

Keywords

Navigation