Skip to main content
Log in

Influence of free-surface on wake flow characteristics of a torpedo-like geometry

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

In the present work, the flow topologies of a generalized torpedo-like geometry were investigated experimentally via Particle Image Velocimetry (PIV) and dye visualization. The study was conducted at length based on the Reynolds number of Re = 20 × 103 and 40 × 103. The torpedo-like geometry was positioned at ratios of immersion between 0.50 ≤ h/D ≤ 3.50 to investigate the free-surface effect on the present results, comparatively. PIV measurements provided ensemble-averaged velocity fluctuations, turbulent kinetic energy and Reynolds stress correlation with spectral analysis of the vortex-shedding mechanism. It is observed that different vortex shedding mechanism occurs depending on the immersion ratio. At h/D = 0.5, wake flow is characterized by the lower shear layer while upper shear layer dominates it at h/D = 0.75 and 1.00. The influence of the free-surface on flow characteristics is found to be negligible at h/D > 2.00 for both Reynolds numbers. Alternating vortex shedding occurs and the wake regions at h/D = 3.5 became nearly symmetrical. The size of the wake zone is moved closer to the stern of the torpedo-like geometry at Re = 40 × 103 and causes a smaller recirculating region. Spectral analysis of the streamwise velocity revealed a decreasing trend of Strouhal number with increasing immersion ratios. The changing of the Strouhal number showed a significant increase at h/D = 0.75 for Re = 20 × 103 an ever-decreasing trend for Re = 40 × 103.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Myring DF (1976) Theoretical study of body drag in subcritical axisymmetric flow. Aeronaut Q 27(3):186–194

    Article  Google Scholar 

  2. Alvarez A, Caffaz A, Caiti A, Casalino G, Gualdesi L, Turetta A, Viviani R (2009) Fòlaga: A low-cost autonomous underwater vehicle combining glider and AUV capabilities. Ocean Eng 36(1):24–38. https://doi.org/10.1016/j.oceaneng.2008.08.014

    Article  Google Scholar 

  3. Kukulya A, Plueddemann A, Austin T, Stokey R, Purcell M, Allen B, Pietro J (2010) Under-ice operations with a REMUS-100 AUV in the arctic. IEEE/OES Autonomous Underwater Vehicles, 2010, pp. 1-8. https://doi.org/10.1109/AUV.2010.5779661

  4. Carreras M, Candela C, Ribas D, Palomeras N, Magií L, Mallios A, Ridao P (2018) Testing SPARUS II AUV, an open platform for industrial, scientific and academic applications. arXiv preprint. arXiv:1811.03494

  5. Koren S, Arieli R, Rom J (1992) Measurements of lateral aerodynamics characteristics of forebodies at high angle of attack in subsonic and transonic flows. In: 30th Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.1992-174

  6. Shi Y, Pan G, Yan-., Yim, S. C., & Jiang, J. G (2019) Numerical study on the cavity characteristics and impact loads of AUV water entry. Appl Ocean Res 89:44–58. https://doi.org/10.1016/j.apor.2019.05.012

    Article  Google Scholar 

  7. Drew, B. A. (2002). Measurement methods and analysis: Forces on underwater gliders. U.S.N.A.-Trident Scholar project report, no. 293

  8. Gao T, Wang Y, Pang Y, Cao J (2016) Hull shape optimization for autonomous underwater vehicles using CFD. Eng Appl Comput Fluid Mech 10(1):599–607. https://doi.org/10.1080/19942060.2016.1224735

    Article  Google Scholar 

  9. Bridges DH, Blanton JN, Brewer WH, Park JT (2003) Experimental investigation of the flow past a submarine at angle of drift. AIAA J 41(1):71–81. https://doi.org/10.2514/2.1915

    Article  Google Scholar 

  10. Jagadeesh P, Murali K, Idichandy VG (2009) Experimental investigation of hydrodynamic force coefficients over AUV hull form. Ocean Eng 36(1):113–118. https://doi.org/10.1016/j.oceaneng.2008.11.008

    Article  Google Scholar 

  11. Gross A, Jagadeesh C, Fasel HF (2013) Numerical and experimental investigation of unsteady three-dimensional separation on axisymmetric bodies. Int J Heat Fluid Flow 44:53–70. https://doi.org/10.1016/j.ijheatfluidflow.2013.04.016

    Article  Google Scholar 

  12. Bal S (2011) The effect of finite depth on 2d and 3d cavitating hydrofoils. J Mar Sci Technol 16(2):129–142. https://doi.org/10.1007/s00773-011-0117-2

    Article  Google Scholar 

  13. Oshkai P, Rockwell D (1999) Free surface wave interaction with a horizontal cylinder. J Fluids Struct 13(7–8):935–954. https://doi.org/10.1006/jfls.1999.0237

    Article  Google Scholar 

  14. Reichl P, Hourigan K, Thompson M (2003) The unsteady wake of a circular cylinder near a free surface. Flow Turbul Combust 71(1–4):347–359. https://doi.org/10.1023/B:APPL.0000014926.99751.b1

    Article  MATH  Google Scholar 

  15. Lin-., & Huang, L. -. M (2010) Free-surface flow past a submerged cylinder. J Hydrodyn 22(5 SUPPL. 1):209–214. https://doi.org/10.1016/S1001-6058(09)60195-5

    Article  Google Scholar 

  16. Doğan S, Özgören M, Okbaz A, Şahin B, Akıllı H (2018) Investigation of interactions between a sphere wake and free surface. J Fac Eng Arch Gazi Univ 33(3):1123–1133. https://doi.org/10.17341/gazimmfd.453552

    Article  Google Scholar 

  17. Shariati SK, Mousavizadegan SH (2017) The effect of appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface. Appl Ocean Res 67:31–43. https://doi.org/10.1016/j.apor.2017.07.001

    Article  Google Scholar 

  18. Amiri MM, Esperança PT, Vitola MA, Sphaier SH (2018) How does the free surface affect the hydrodynamics of a shallowly submerged submarine? Appl Ocean Res 76:34–50. https://doi.org/10.1016/j.apor.2018.04.008

    Article  Google Scholar 

  19. Salari M, Rava A (2017) Numerical investigation of hydrodynamic flow over an AUV moving in the water-surface vicinity considering the laminar-turbulent transition. J Mar Sci Appl 16(3):298–304. https://doi.org/10.1007/s11804-017-1422-x

    Article  Google Scholar 

  20. Amiri MM, Sphaier SH, Vitola MA, Esperança PT (2019) URANS investigation of the interaction between the free surface and a shallowly submerged underwater vehicle at steady drift. Appl Ocean Res 84:192–205. https://doi.org/10.1016/j.apor.2019.01.012

    Article  Google Scholar 

  21. Phillips AB, Turnock SR, Furlong M (2010) Influence of turbulence closure models on the vortical flow field around a submarine body undergoing steady drift. J Mar Sci Technol 15(3):201–217. https://doi.org/10.1007/s00773-010-0090-1

    Article  Google Scholar 

  22. Kilavuz A, Ozgoren M, Durhasan T, Sahin B, Kavurmacioglu L, Akilli H, Sarigigüzel F (2019) Analysis of attack angle effect on flow characteristics around torpedo-like geometry placed near the free-surface via CFD. J Polytech. https://doi.org/10.2339/politeknik.675632

    Article  MATH  Google Scholar 

  23. Wang G, Senocak I, Shyy W, Ikohagi T, Cao S (2001) Dynamics of attached turbulent cavitating flows. Prog Aerosp Sci 37(6):551–581. https://doi.org/10.1016/s0376-0421(01)00014-8

    Article  Google Scholar 

  24. Senocak I, Shyy W (2002) A pressure-based method for turbulent cavitating flow computations. J Comput Phys 176(2):363–383. https://doi.org/10.1006/jcph.2002.6992

    Article  MATH  Google Scholar 

  25. Das HN, Rao N, Suman KNS, Prasad VVS (2006) Performance prediction of elliptical head form profile of a submerged body. J Inst Eng 86:46–49

    Google Scholar 

  26. Cheng MA, Jia D, Qian Z, Feng D (2006) Study on cavitation flows of underwater vehicle. J Hydrodyn Ser B 18(3):373–377. https://doi.org/10.1016/s1001-6058(06)60081-4

    Article  Google Scholar 

  27. Terentiev AG, Kirschner IN, Uhlman JS (2011) The Hydrodynamics of Cavitating Flows, Backbone Publishing Company, U.S.A

  28. de Henriques TA, J., Hedges T. S., Owen I., Poole R. J. (2016) The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave current interaction. Energy 102:166–175

    Article  Google Scholar 

  29. Aghsaee P, Markfort CD (2018) Effects of flow depth variations on the wake recovery behind a horizontal-axis hydrokinetic in-stream turbine. Renew Energy 125:620–629

    Article  Google Scholar 

  30. Nishino T, Willden RHJ (2013) Two-scale dynamics of flow past a partial cross-stream array of tidal turbines. J Fluid Mech 730:220–244

    Article  MathSciNet  Google Scholar 

  31. Churchfield MJ, Li Y, Moriarty PJ (2013) A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines. Phil Trans R Soc A 371:20120421

    Article  MathSciNet  Google Scholar 

  32. Gupta V, Wan M (2019) Low-order modelling of wake meandering behind turbines. J Fluid Mech 877:534–560

    Article  MathSciNet  Google Scholar 

  33. Hu Q, Li Y, Di Y, Chen J (2017) A large-eddy simulation study of horizontal axis tidal turbine in different inflow conditions. J Renew Sustain Energy 9:064501

    Article  Google Scholar 

  34. Li Z, Ghia K, Li Y, Fan Z, Shen L (2021) Unsteady Reynolds-averaged Navier-Stokes investigation of free surface wave impact on tidal turbine wake. Proc R Soc A 477:20200703

    Article  MathSciNet  Google Scholar 

  35. Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16(3–4):236–247. https://doi.org/10.1007/BF00206543

    Article  Google Scholar 

  36. Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J (2018) PIV uncertainty and measurement accuracy. Particle Image Velocimetry. Springer, Cham, pp 203–241

    Chapter  Google Scholar 

  37. Ozgoren M (2006) Flow structure in the downstream of square and circular cylinders. Flow Meas Instrum 17(4):225–235. https://doi.org/10.1016/j.flowmeasinst.2005.11.005

    Article  Google Scholar 

  38. Kilavuz A, Sarigiguzel F, Ozgoren M, Durhasan T, Sahin B, Kavurmacioglu LA, Sekeroglu E, Yaniktepe B (2022) The impacts of the free-surface and angle of attack on the flow structures around a torpedo-like geometry. Eur J Mech B/Fluids 92:226–243

    Article  MathSciNet  Google Scholar 

  39. Sarigiguzel F, Kilavuz A, Ozgoren M, Durhasan T, Sahin B, Kavurmacioglu LA, Sekeroglu E, Yaniktepe B (2022) Experimental Investigation of Free-surface Effects on Flow Characteristics of a Torpedo-Like Geometry Having a Cambered Nose. Ocean Eng 253:111174. https://doi.org/10.1016/j.oceaneng.2022.111174

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Scientific and Technological Research Council of Turkey (TUBITAK) under Contract No. 214M318 and Cukurova University Scientific Research Project Coordinators (BAP) under Contract No. FYL-2019-11596. It is a pleasure to thank the Mechanical Engineering Department of Cukurova University and the Advanced Fluid Mechanics PIV laboratory of Osmaniye Korkut Ata University, Turkey for letting the authors conduct this experimental work.

Funding

türkiye bilimsel ve teknolojik araştirma kurumu,214M318,Muammer Ozgoren

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Durhasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilavuz, A., Durhasan, T., Ozgoren, M. et al. Influence of free-surface on wake flow characteristics of a torpedo-like geometry. J Mar Sci Technol 27, 1130–1147 (2022). https://doi.org/10.1007/s00773-022-00893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-022-00893-7

Keywords

Navigation