Skip to main content
Log in

Systemtherapie des anaplastischen Schilddrüsenkarzinoms

Systemic treatment of anaplastic thyroid carcinoma

  • Leitthema
  • Published:
Die Onkologie Aims and scope

Zusammenfassung

Hintergrund

Anaplastische Schilddrüsenkarzinome (ATC) sind eine seltene, aber hoch aggressive Subgruppe der Schilddrüsenkarzinome mit einer Überlebenszeit von nur wenigen Monaten trotz multimodaler Therapie. Im frühen Stadium sind die Chirurgie und die Radiochemotherapie entscheidend für das Überleben der Patient*innen. Da jedoch über 90 % der ATC metastasieren, ist anschließend eine effektive Systemtherapie von essentieller Bedeutung.

Ziel

Ziel war die Darstellung aller klassischen und neuen systemischen Therapieoptionen beim ATC sowie der dazu notwendigen zielgerichteten molekularen Diagnostik.

Methoden

Es handelt sich um eine selektive Literaturrecherche sowie Auswertung des eigenen Patientenkollektivs.

Ergebnisse

Der Review fasst alle aktuellen systemischen Therapiekonzepte von klassischen Chemotherapien über molekularpathologische zielgerichtete Therapien mit Kinaseinhibitoren sowie immuntherapeutische Ansätze zusammen.

Schlussfolgerung

Durch diese neuen Therapiekonzepte kann die Prognose der Patient*innen mit ATC entscheidend verbessert werden.

Abstract

Introduction

Anaplastic thyroid carcinoma (ATC) is a rare, but highly aggressive subgroup of thyroid carcinomas with an average survival of only a few months despite multimodal therapy. In early disease stages, surgical intervention and radiochemotherapy are critical determinants for patient outcome and survival. However, more than 90% of patients with ATC develop metastasis and therefore require systemic treatment.

Aim

Presentation of all systemic treatment options for ATC patients including standard systemic chemotherapies, novel targeted therapies and immunotherapies, including the essential molecular diagnostics.

Methods

Literature search as well as evaluation of own patient population.

Results

In this review, we summarize all current systemic therapeutic concepts including standard chemotherapy, molecular targeted therapies with kinase inhibitors, and immunotherapies.

Conclusion

The implementation of such novel treatment concepts can strongly improve the prognosis of patients with ATC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Dumke AK, Pelz T, Vordermark D (2014) Long-term results of radiotherapy in anaplastic thyroid cancer. Radiat Oncol 9:90

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perri F, Lorenzo GD, Scarpati GD, Buonerba C (2011) Anaplastic thyroid carcinoma: a comprehensive review of current and future therapeutic options. World J Clin Oncol 2:150–157

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smallridge RC (2012) Approach to the patient with anaplastic thyroid carcinoma. J Clin Endocrinol Metab 97:2566–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prasongsook N et al (2017) Survival in response to multimodal therapy in anaplastic thyroid cancer. J Clin Endocrinol Metab 102:4506–4514

    Article  PubMed  Google Scholar 

  5. Smallridge RC, Copland JA (2010) Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol 22:486–497

    Article  CAS  Google Scholar 

  6. Wendler J et al (2016) Clinical presentation, treatment and outcome of anaplastic thyroid carcinoma: results of a multicenter study in Germany. Eur J Endocrinol 175:521–529

    Article  CAS  PubMed  Google Scholar 

  7. Salehian B, Liem SY, Mojazi Amiri H, Maghami E, Clinical Trials in Management of Anaplastic Thyroid Carcinoma (2019) Progressions and Set Backs: A Systematic Review. Int J Endocrinol Metab 17:e67759

    PubMed  PubMed Central  Google Scholar 

  8. Dierks C et al (2021) Combination of lenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma. Thyroid 31:1076–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Al-Jundi M, Thakur S, Gubbi S, Klubo-Gwiezdzinska J (2020) Novel targeted therapies for metastatic thyroid cancer—a comprehensive review. Cancers 12(8):2104. https://doi.org/10.3390/cancers12082104

    Article  CAS  PubMed Central  Google Scholar 

  10. Nikiforova MN et al (2003) BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88:5399–5404

    Article  CAS  PubMed  Google Scholar 

  11. Takano T, Ito Y, Hirokawa M, Yoshida H, Miyauchi A (2007) BRAF V600E mutation in anaplastic thyroid carcinomas and their accompanying differentiated carcinomas. Br J Cancer 96:1549–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu B et al (2020) Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid 30:1505–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoo SK et al (2019) Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun 10:2764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Duan H et al (2019) Mutational profiling of poorly differentiated and anaplastic thyroid carcinoma by the use of targeted next-generation sequencing. Histopathology 75:890–899

    Article  PubMed  Google Scholar 

  15. Bonhomme B et al (2017) Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases. Thyroid 27:682–692

    Article  CAS  PubMed  Google Scholar 

  16. Kunstman JW et al (2015) Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet 24:2318–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lai WA, Liu CY, Lin SY, Chen CC, Hang JF (2020) Characterization of driver mutations in anaplastic thyroid carcinoma identifies RAS and PIK3CA mutations as negative survival predictors. Cancers 12(7):1973. https://doi.org/10.3390/cancers12071973

    Article  CAS  PubMed Central  Google Scholar 

  18. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE (2002) PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 26:1016–1023

    Article  PubMed  Google Scholar 

  19. Derbel O et al (2011) Results of combined treatment of anaplastic thyroid carcinoma (ATC). BMC Cancer 11:469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ekman ET, Lundell G, Tennvall J, Wallin G (1990) Chemotherapy and multimodality treatment in thyroid carcinoma. Otolaryngol Clin North Am 23:523–527

    Article  CAS  PubMed  Google Scholar 

  21. Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH, DeConti R (1985) A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer 56:2155–2160

    Article  CAS  PubMed  Google Scholar 

  22. Ain KB, Egorin MJ, DeSimone PA (2000) Treatment of anaplastic thyroid carcinoma with paclitaxel: phase 2 trial using ninety-six-hour infusion. Collaborative Anaplastic Thyroid Cancer Health Intervention Trials (CATCHIT) Group. Thyroid 10:587–594

    Article  CAS  PubMed  Google Scholar 

  23. Sosa JA et al (2014) Randomized safety and efficacy study of fosbretabulin with paclitaxel/carboplatin against anaplastic thyroid carcinoma. Thyroid 24:232–240

    Article  CAS  PubMed  Google Scholar 

  24. Crispo F, Notarangelo T, Pietrafesa M, Lettini G, Storto G, Sgambato A, Maddalena F, Landriscina M (2019) BRAF inhibitors in thyroid cancer: Clinical impact, mechanisms of resistance and future perspectives. Cancers (Basel) 11(9):1388. https://doi.org/10.3390/cancers11091388

    Article  CAS  Google Scholar 

  25. Subbiah V et al (2018) Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol 36:7–13

    Article  CAS  PubMed  Google Scholar 

  26. Wang JR et al (2019) Complete surgical resection following neoadjuvant dabrafenib plus trametinib in BRAF(V600E)-mutated anaplastic thyroid carcinoma. Thyroid 29:1036–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ciampi R et al (2019) Genetic landscape of somatic mutations in a large cohort of sporadic medullary thyroid carcinomas studied by next-generation targeted sequencing. iScience 20:324–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Z et al (2008) Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3‑kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab 93:3106–3116

    Article  CAS  PubMed  Google Scholar 

  29. Landa I et al (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 126:1052–1066

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pozdeyev N et al (2018) Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res 24:3059–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA (1997) Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 57:1690–1694

    CAS  PubMed  Google Scholar 

  32. Ciampi R, Nikiforov YE (2007) RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology 148:936–941

    Article  CAS  PubMed  Google Scholar 

  33. Ciampi R, Giordano TJ, Wikenheiser-Brokamp K, Koenig RJ, Nikiforov YE (2007) HOOK3-RET: a novel type of RET/PTC rearrangement in papillary thyroid carcinoma. Endocr Relat Cancer 14:445–452

    Article  CAS  PubMed  Google Scholar 

  34. Vanden PB et al (2017) Pediatric, adolescent, and young adult thyroid carcinoma harbors frequent and diverse targetable genomic alterations, including Kinase fusions. Oncologist 22:255–263

    Article  CAS  Google Scholar 

  35. Su X et al (2016) Radiation exposure, young age, and female gender are associated with high prevalence of RET/PTC1 and RET/PTC3 in papillary thyroid cancer: a meta-analysis. Oncotarget 7:16716–16730

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wirth LJ et al (2020) Efficacy of selpercatinib in RET-altered thyroid cancers. N Engl J Med 383:825–835

    Article  CAS  PubMed  Google Scholar 

  37. Dias-Santagata D et al (2020) Response to RET-specific therapy in RET fusion-positive anaplastic thyroid carcinoma. Thyroid 30:1384–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amatu A et al (2019) Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann Oncol 30(Suppl 8):viii5–viii15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cocco E, Scaltriti M, Drilon A (2018) NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 15:731–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Drilon A et al (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378:731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Doebele RC et al (2020) Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol 21:271–282

    Article  CAS  PubMed  Google Scholar 

  42. Park JC, Ashok A, Liu C, Kang H (2022) Real-world experience of NTRK fusion-positive thyroid cance. JCO Precis Oncol 6:e2100442

    Article  PubMed  PubMed Central  Google Scholar 

  43. Matsui J et al (2008) E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer 122:664–671

    Article  CAS  PubMed  Google Scholar 

  44. Okamoto K et al (2013) Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett 340:97–103

    Article  CAS  PubMed  Google Scholar 

  45. Yamamoto Y et al (2014) Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell 6:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, Habra MA, Newbold K, Shah MH, Hoff AO, Gianoukakis AG, Kiyota N, Taylor MH, Kim SB, Krzyzanowska MK, Dutcus CE, de las Heras B, Zhu J, Sherman SI (2015) Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 372(7):621–630. https://doi.org/10.1056/NEJMoa1406470

    Article  CAS  PubMed  Google Scholar 

  47. Kiyota N et al (2015) Subgroup analysis of Japanese patients in a phase 3 study of lenvatinib in radioiodine-refractory differentiated thyroid cancer. Cancer Sci 106:1714–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schlumberger M, Tahara M, Wirth LJ (2015) Lenvatinib in radioiodine-refractory thyroid cancer. N Engl J Med 372:1868

    Article  PubMed  CAS  Google Scholar 

  49. Koyama S et al (2018) Lenvatinib for anaplastic thyroid cancer and lenvatinib-induced thyroid dysfunction. Eur Thyroid J 7:139–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takahashi S et al (2019) A Phase II study of the safety and efficacy of lenvatinib in patients with advanced thyroid cancer. Future Oncol 15:717–726

    Article  CAS  PubMed  Google Scholar 

  51. Tahara M et al (2017) Lenvatinib for anaplastic thyroid cancer. Front Oncol 7:25

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wirth LJ et al (2021) Open-label, single-arm, multicenter, phase II trial of Lenvatinib for the treatment of patients with anaplastic thyroid cancer. J Clin Oncol 39:2359–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Adam P et al (2021) FGF-receptors and PD-L1 in anaplastic and poorly differentiated thyroid cancer: evaluation of the preclinical rationale. Front Endocrinol 12:712107

    Article  Google Scholar 

  54. Gandhi L et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378:2078–2092

    Article  CAS  PubMed  Google Scholar 

  55. Garon EB et al (2019) Five-year overall survival for patients with advanced nonsmall-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study. J Clin Oncol 37:2518–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Villaruz LC et al (2019) Comparison of PD-L1 immunohistochemistry assays and response to PD-1/L1 inhibitors in advanced non-small-cell lung cancer in clinical practice. Histopathology 74:269–275

    Article  PubMed  Google Scholar 

  57. Borghaei H et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Capdevila J et al (2020) PD‑1 blockade in anaplastic thyroid carcinoma. J Clin Oncol 38:2620–2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gunda V et al (2019) Anti-PD-1/PD-L1 therapy augments lenvatinib’s efficacy by favorably altering the immune microenvironment of murine anaplastic thyroid cancer. Int J Cancer 144:2266–2278

    Article  CAS  PubMed  Google Scholar 

  60. Makker V et al (2019) Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol 20:711–718

    Article  CAS  PubMed  Google Scholar 

  61. Taylor MH et al (2021) The LEAP program: lenvatinib plus pembrolizumab for the treatment of advanced solid tumors. Future Oncol 17:637–648

    Article  CAS  PubMed  Google Scholar 

  62. Finn RS et al (2020) Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J Clin Oncol 38:2960–2970

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Dierks.

Ethics declarations

Interessenkonflikt

C. Dierks gibt Gutachtertätigkeiten für Eisai, AstraZeneca, Novartis, Roche, Lilly und Bayer an.

Für diesen Beitrag wurden von der Autorin keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dierks, C. Systemtherapie des anaplastischen Schilddrüsenkarzinoms. Onkologie 28, 642–648 (2022). https://doi.org/10.1007/s00761-022-01198-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-022-01198-5

Schlüsselwörter

Keywords

Navigation