Skip to main content
Log in

Neue Entwicklungen der Systemtherapie maligner Erkrankungen

New developments in system therapy of malignant disease

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Neue Krebstherapeutika mit zielgerichteter Wirksamkeit und guter Verträglichkeit wurden entwickelt.

Ziel

Ziel der Arbeit ist die exemplarische Darstellung neuer Medikamente in der Onkologie.

Material und Methoden

Grundlage der Darstellung ist das Onko Update 2019.

Abstract

Background

New anticancer drugs were developed with targeted efficacy and good tolerability.

Objective

The aim of this review paper is an exemplary presentation of new drugs in oncology.

Material and methods

The basis of this article is the Onko Update 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Abbreviations

AKT:

Proteinkinase B

ALK:

Anaplastic lymphoma kinase

AML:

Akute myeloische Leukämie

AXL:

AXL-Rezeptor-Tyrosinkinase

BCL‑2:

B‑cell lymphoma 2 protein

BRAF:

BRAF Serin-Threonin-Kinase

BRCA:

Breast cancer susceptibility protein

BTK:

Bruton’s Tyrosinkinase

CDK:

Cyclin-dependent Kinase

CLL:

Chronische lymphatische Leukämie

CML:

Chronische myeloische Leukämie

CYP3A4:

Cytochrome P450 3A4

EGFR:

Epidermal growth factor receptor

EMA:

European Medicines Agency

FDA:

Federal Drug Agency

FGFR:

Fibroblast growth factor receptor

FLT3:

Fms related tyrosine kinase 3

HER2:

Human epidermal growth factor receptor 2

IDH:

Isocitratdehydrogenase

IGHV:

Immunglobulinschwerkettengen

IHC:

Immunhistochemie

ITD:

Internal tandem duplication

KRAS:

Protoonkogen KRAS

MDS:

Myelodysplastisches Syndrom

MEK:

Dual threonine and tyrosine recognition kinase

MET:

Tyrosin protein kinase MET

MRD:

Measurable residual disease

NSCLC:

Nichtkleinzelliges Lungenkarzinom

NTRK:

Neurotrophine receptor kinase

PARP:

Poly (ADP-ribose) polymerase

PD‑1:

Programmed death receptor 1

PD-L1:

Programmed death ligand 1

PI3K:

Phosphoinositid-3-Kinase

ROS1:

ROS1-Rezeptor-Tyrosinkinase

STAT5:

Signal transducer and activator of transcription 5

TKI:

Tyrosinkinaseinhibitoren

TP53:

Tumorprotein p53

VEGFR:

Vascular endothelial growth factor receptor

Literatur

  1. Kanz L, Bokemeyer C, Neubauer A (2019) Handbuch ONKOLOGIE 2019. med publico GmbH, Wiesbaden

    Google Scholar 

  2. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP et al (2017) Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med 376:917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A et al (2018) Comprehensive characterization of cancer driver genes and mutations. Cell 173:371–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA et al (2017) The target landscape of clinical kinase drugs. Science 358:6367

    Article  CAS  Google Scholar 

  5. Marquart J, Chen EY, Prasad V (2018) Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology. JAMA Oncol 4:1093–1098

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD et al (2017) Midostaurin plus chemotherapy for acute Myeloid leukemia with a FLT3 mutation. N Engl J Med 377(5):454–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cortes JE, Tallman MS, Schiller GJ, Trone D, Gammon G, Goldberg SL et al (2018) Phase-IIb-study of 2 dosing regimens of quizartinib monotherapy in FLT3-ITD-mutated, relapsed or refractory AML. Blood 132(6):598–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shanafelt TD, Wang V, Kay NE, Hanson CA, O’Brien SM, Barrientos JC et al (2018) A randomized phase III study of Ibrutinib (PCI-32765)-based therapy vs. Standard Fludarabine, Cyclophosphamide, and Rituximab (FCR) Chemoimmunotherapy in untreated younger patients with chronic lymphocytic leukemia (CLL): a trial of the ECOG-ACRIN cancer research group (E1912). Blood 132(Suppl 1):LBA-4A

    Article  Google Scholar 

  9. Woyach JA, Ruppert AS, Heerema NA, Zhao W, Booth AM, Ding W et al (2018) Ibrutinib regimens versus Chemoimmunotherapy in older patients with untreated CLL. N Engl J Med 379(26):2517–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jain N, Keating M, Thompson P, Ferrajoli A, Burger J, Borthakur G et al (2019) Ibrutinib and Venetoclax for first-line treatment of CLL. N Engl J Med 380(22):2095–2103

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt C, Zoellner AK, Jurinovic V, Sökler M, Forstpointner R, Haubner S et al (2018) Chemotherapy-free combination of Obinutuzumab and Ibrutinib in first line treatment of follicular Lymphoma. The alternative study by the German low grade Lymphoma study group (GLSG). Blood 132:448

    Article  CAS  Google Scholar 

  12. Bartlett NL, Costello BA, LaPlant BR, Ansell SM, Kuruvilla JG, Reeder CB et al (2018) Single-agent ibrutinib in relapsed or refractory follicular lymphoma: a phase 2 consortium trial. Blood 2018(131):182–190

    Article  CAS  Google Scholar 

  13. Gopal AK, Schuster SJ, Fowler NH, Trotman J, Hess G, Hou JZ et al (2018) Ibrutinib as treatment for patients with relapsed/refractory follicular Lymphoma: results from the open-label, Multicenter, PHASE II DAWN study. J Clin Oncol 36:2405–2412

    Article  CAS  PubMed  Google Scholar 

  14. Byrd JC, Woyach JA, Furman RR, Martin P, O’Brien SM, Brown JR et al (2018) Acalabrutinib in treatment-naive chronic lymphocytic leukemia (CLL): updated results from the phase 1/2 ACE-CL-001 study. Blood 132(Suppl 1):692

    Article  Google Scholar 

  15. Wang M, Rule S, Zinzani PL, Goy A, Casasnovas O, Smith SD et al (2018) Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet 391:659–667

    Article  CAS  PubMed  Google Scholar 

  16. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH et al (2018) Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 2018(378):113–125

    Article  Google Scholar 

  17. Wu YL, Zhang L, Kim DW, Liu X, Lee DH, Yang JC et al (2018) Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET Factor-Dysregulated non-small-cell lung cancer. J Clin Oncol 36(31):3101–3109

    Article  CAS  PubMed  Google Scholar 

  18. Robichaux JP, Elamin YY, Tan Z, Carter BW, Zhang S, Liu S et al (2018) Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small-cell lung cancer. Nat Med 2018(24):638–646

    Article  CAS  Google Scholar 

  19. Camidge DR, Kim HR, Ahn MJ, Yang JC, Han JY, Lee JS et al (2018) Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med 379:2027–2039

    Article  CAS  PubMed  Google Scholar 

  20. Powles T, Motzer RJ, Escudier B, Pal S, Kollmannsberger C, Pikiel J et al (2018) Outcomes based on prior therapy in the phase 3 METEOR trial of cabozantinib versus everolimus in advanced renal cell carcinoma. Br J Cancer 119:663–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Escudier B, Powles T, Motzer RJ, Olencki T, Arén Frontera O, Oudard S et al (2018) Cabozantinib, a new standard of care for patients with advanced renal cell carcinoma and bone metastases? Subgroup analysis of the METEOR trial. J Clin Oncol 36:765–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Savona MR, Pollyea DA, Stock W, Oehler VG, Schroeder MA, Lancet J et al (2018) Phase Ib study of Glasdegib, a hedgehog pathway inhibitor, in combination with standard chemotherapy in patients with AML or high-risk MDS. Clin Cancer Res 24(10):2294–2303

    Article  CAS  PubMed  Google Scholar 

  23. Wolf J, Seto T, Han J, Reguart N, Garon EB, Groen HJM et al (2018) Results of the GEOMETRY mono‑1 phase-II-study for evaluation of the MET inhibitor capmatinib (INC280) in patients with MET∆ex14 mutated advanced non-small cell lung cancer. Ann Oncol 29(suppl. 8):LBA52

    Google Scholar 

  24. Robert C, Grob JJ, Stroyakovskiy D, Karaszewska B, Hauschild A, Levchenko E et al (2019) Five-year outcomes with Dabrafenib plus Trametinib in metastatic melanoma. N Engl J Med. https://doi.org/10.1056/NEJMoa1904059

    Article  PubMed  Google Scholar 

  25. Long GV, Hauschild A, Santinami M, Atkinson V, Mandalà M, Chiarion-Sileni V et al (2017) Adjuvant Dabrafenib plus Trametinib in stage III BRAF-mutated melanoma. N Engl J Med 377:1813–1823

    Article  CAS  PubMed  Google Scholar 

  26. Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G et al (2018) Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 19:1315–1327

    Article  CAS  PubMed  Google Scholar 

  27. Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW et al (2018) Discovery of Asciminib (ABL001), an Allosteric inhibitor of the Tyrosine Kinase activity of BCR-ABL1. J Med Chem 61(18):8120–8135

    Article  CAS  PubMed  Google Scholar 

  28. Lampson BL, Kasar SN, Matos TR, Morgan EA, Rassenti L, Davids MS et al (2016) Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood 128(2):195–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS et al (2019) Alpelisib for PIK3CA-mutated, hormone receptor–positive advanced breast cancer. N Engl J Med 380(20):1929–1940

    Article  PubMed  Google Scholar 

  30. Pascual J, Turner NC (2019) Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol. https://doi.org/10.1093/annonc/mdz133

    Article  PubMed  PubMed Central  Google Scholar 

  31. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378:731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Demetri GD, Paz-Ares L, Farago AF, Liu SV, Chawla SP, Tosi D et al (2018) Efficacy and safety of entrectinib in patients with NTRK fusion-positive tumors: pooled analysis of STARTRK‑2, STARTRK‑1 and ALKA-372-001. Ann Oncol 29(suppl. 8):LBA17

    Google Scholar 

  33. Stein EM, DiNardo CD, Fathi AT, Pollyea DA, Stone RM, Altman JK et al (2019) Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood 133(7):676–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fathi AT, DiNardo CD, Kline I, Kenvin L, Gupta I, Attar EC et al (2018) Differentiation syndrome associated with Enasidenib, a selective inhibitor of mutant Isocitrate Dehydrogenase 2: analysis of a phase-I/II-study. Jama Oncol 4:1106–1110

    Article  PubMed  PubMed Central  Google Scholar 

  35. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS et al (2018) Durable remissions with Ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med 378(25):2386–2398

    Article  CAS  PubMed  Google Scholar 

  36. Turner NC, Slamon DJ, Ro J, Bondarenko I, Im SA, Masuda N et al (2018) PALOMA-3: Fulvestrant + Palbociclib – Überleben. N Engl J Med 379:1926–1936

    Article  CAS  PubMed  Google Scholar 

  37. Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S et al (2018) Updated results from MONALEESA‑2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann Oncol 29:1541–1547

    CAS  PubMed  Google Scholar 

  38. Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X et al (2017) MONARCH 2: Abemaciclib in combination with Fulvestrant in women with HR+/HER2− advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol 35(25):2875–2884

    Article  CAS  PubMed  Google Scholar 

  39. Clarke N, Wiechno P, Alekseev B, Sala N, Jones R, Kocak I et al (2018) Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 19:975–986

    Article  CAS  PubMed  Google Scholar 

  40. Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee KH et al (2018) Talazoparib in patients with advanced breast cancer and a Germline BRCA mutation. N Engl J Med 379:753–763

    Article  CAS  PubMed  Google Scholar 

  41. Baerlocher GM, Oppliger Leibundgut E, Ottmann OG, Spitzer G, Odenike O, McDevitt MA et al (2015) Telomerase inhibitor Imetelstat in patients with essential Thrombocythemia. N Engl J Med 373(10):920–928

    Article  CAS  PubMed  Google Scholar 

  42. Tefferi A, Lasho TL, Begna KH, Patnaik MM, Zblewski DL, Finke CM et al (2015) A pilot study of the Telomerase inhibitor Imetelstat for Myelofibrosis. N Engl J Med 373(10):908–919

    Article  CAS  PubMed  Google Scholar 

  43. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK et al (2018) CPX-351 (cytarabine and daunorubicin) Liposome for injection versus conventional Cytarabine plus Daunorubicin in older patients with newly diagnosed secondary acute Myeloid leukemia. J Clin Oncol 36(26):2684–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS et al (2018) Ado-Trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol 36:2532–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saadat M, Zahednezhad F, Zakeri-Milani P, Reza Heidari H, Shahbazi-Mojarrad J, Valizadeh H (2019) Drug targeting strategies based on charge dependent uptake of nanoparticles into cancer cells. J Pharm Pharm Sci 22(1):191–220

    Article  PubMed  Google Scholar 

  46. Mioc A, Mioc M, Ghiulai R, Voicu M, Babuta R, Trandafirescu C et al (2019) Gold nanoparticles as targeted delivery systems and theranostic agents in cancer therapy. Curr Med Chem. https://doi.org/10.2174/0929867326666190506123721

    Article  PubMed  Google Scholar 

  47. Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY et al (2019) Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer 1871(2):419–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hochhaus.

Ethics declarations

Interessenkonflikt

A. Hochhaus und T. Ernst erhielten Forschungsunterstützung von Novartis, BMS, Incyte, Pfizer.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Alle genannten klinischen Studien wurden von unabhängigen Ethikkommissionen genehmigt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochhaus, A., Ernst, T. Neue Entwicklungen der Systemtherapie maligner Erkrankungen. Onkologe 25 (Suppl 1), 68–76 (2019). https://doi.org/10.1007/s00761-019-00648-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-019-00648-x

Schlüsselwörter

Keywords

Navigation