Skip to main content
Log in

Bildgebende radiologische Diagnostik und Verlaufsbeurteilung beim HCC

Radiological imaging and response assessment in HCC

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Die bildgebende radiologische Diagnostik ist heute aus den Untersuchungen beim hepatozellulären Karzinom (HCC) nicht mehr wegzudenken. Die Multidetektor-Computertomographie (CT) und Magnetresonanztomographie (MRT) spielen hierbei eine entscheidende Rolle. Die Kontrastmittelsonographie (CE-US, „contrast enhanced ultrasound“) stellt zudem für die Charakterisierung des HCC bei einer in der B‑Bild-Sonographie zufällig entdeckten Leberläsion bei Hochrisikopatienten eine Alternative dar.

Methode

Es wurden eine Recherche und Analyse aktueller Literatur durchgeführt.

Ergebnisse

Die CT ist als schnell und universell verfügbare Bildgebungsmodalität eine wichtige Methode zur Diagnostik des HCC. Sie profitiert von den technischen Weiterentwicklungen der letzten Jahrzehnte, die sich neben reduzierter Strahlendosis v. a. in schnellerer Akquisition niederschlagen. Mit der MRT können noch weitere Diagnosekriterien für die Evaluation und Differenzialdiagnose von fokalen Leberläsionen in der zirrhotischen Leber herangezogen werden. Sie ist heute ausreichend robust, um bei den allermeisten Patienten adäquate Bilder zu generieren. Die CE-US ist in der aktuellen nationalen S3-Leitlinie zur Diagnostik und Therapie des HCC als alternatives bildgebendes Verfahren zur CT und MRT für die Charakterisierung des HCC empfohlen, wenn ein unklarer Leberrundherd unabhängig von seiner Größe in einer Hochrisikogruppe in der B‑Bild-Sonographie detektiert wird. Die Vorteile liegen in den geringen Kosten, der raschen Verfügbarkeit, der fehlenden Strahlenbelastung und der fehlenden Nephrotoxizität. Im klinischen Alltag hat sich die Responsebeurteilung mit den mRECIST-Kriterien beim HCC weitestgehend durchgesetzt.

Abstract

Background

Radiological imaging is nowadays an integral part of making the diagnosis in hepatocellular carcinoma (HCC). Multidetector computed tomography (CT) and magnetic resonance imaging (MRI) play a decisive role in this. Contrast-enhanced ultrasound (CE-US) represents an alternative to these for the characterization of incidentally discovered hepatic lesions in B‑image ultrasound in high-risk patients.

Method

A search and analysis of the currently available literature were carried out.

Results

The CT is a rapid and universally available imaging modality which is an important method in the diagnostics of HCC. It has profited from the technical developments over the last decade, which is particularly reflected in the more rapid acquisition in addition to reduced radiation doses. With MRI more diagnostic criteria for the evaluation and differential diagnosis of focal hepatic lesions in a cirrhotic liver can be acquired. Nowadays, it is sufficiently robust to generate adequate images from most patients. In the current national S3 guidelines on the diagnostics and treatment of HCC, CE-US is recommended as an alternative imaging procedure to CT and MRI for characterization of HCC in a high-risk group, when an unclear focal liver nodule is detected in B‑image ultrasound, independent of its size. The advantage lies in the lower costs, rapid availability, lack of radiation exposure and lack of nephrotoxicity. In the clinical routine the response assessment with the mRECIST criteria for HCC has become widely established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Bruix J, Sherman M, American Association for the Study of Liver D (2011) Management of hepatocellular carcinoma: an update. Hepatology 53:1020–1022

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bartolozzi C, Crocetti L, Lencioni R et al (2007) Biliary and reticuloendothelial impairment in hepatocarcinogenesis: the diagnostic role of tissue-specific MR contrast media. Eur Radiol 17:2519–2530

    Article  PubMed  Google Scholar 

  3. Bartolozzi C, Battaglia V, Bargellini I et al (2013) Contrast-enhanced magnetic resonance imaging of 102 nodules in cirrhosis: correlation with histological findings on explanted livers. Abdom Imaging 38:290–296

    Article  PubMed  Google Scholar 

  4. Boozari B, Soudah B, Rifai K, Schneidewind S, Vogel A, Hecker H, Hahn A, Schlue J, Dietrich CF, Bahr MJ, Kubicka S, Manns MP, Gebel M (2011) Grading of hypervascular hepatocellular carcinoma using late phase of contrast enhanced sonography—a prospective study. Dig Liver Dis 43(6):484–490

    Article  PubMed  Google Scholar 

  5. Brancatelli G, Baron RL, Peterson MS et al (2003) Helical CT screening for hepatocellular carcinoma in patients with cirrhosis: frequency and causes of false-positive interpretation. AJR Am J Roentgenol 180:1007–1014

    Article  PubMed  Google Scholar 

  6. Bruegel M, Holzapfel K, Gaa J et al (2008) Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18:477–485

    Article  PubMed  Google Scholar 

  7. Burrel M, Llovet JM, Ayuso C et al (2003) MRI angiography is superior to helical CT for detection of HCC prior to liver transplantation: an explant correlation. Hepatology 38:1034–1042

    Article  PubMed  Google Scholar 

  8. Dietrich CF, Potthoff A, Helmberger T, Ignee A, Willmann JK, CEUS LI-RADS Working Group (2018) Contrast-enhanced ultrasound: liver imaging reporting and data system (CEUS LI-RADS). Z Gastroenterol 56(5):499–506

    Article  PubMed  Google Scholar 

  9. Gillmore R, Stuart S, Kirkwood A et al (2011) EASL and mRECIST responses are independent prognostic factors for survival in hepatocellular cancer patients treated with transarterial embolization. J Hepatol 55:1309–1316

    Article  PubMed  Google Scholar 

  10. Grazioli L, Olivetti L, Fugazzola C et al (1999) The pseudocapsule in hepatocellular carcinoma: correlation between dynamic MR imaging and pathology. Eur Radiol 9:62–67

    Article  PubMed  CAS  Google Scholar 

  11. Greten TF, Malek NP, Schmidt S, Arends J, Bartenstein P, Bechstein W, Bernatik T et al (2013) Diagnosis of and therapy for hepatocellular carcinoma. Z Gastroenterol 51:1269–1326

    Article  PubMed  CAS  Google Scholar 

  12. Hanna RF, Aguirre DA, Kased N et al (2008) Cirrhosis-associated hepatocellular nodules: correlation of histopathologic and MR imaging features. Radiographics 28:747–769

    Article  PubMed  Google Scholar 

  13. Holland AE, Hecht EM, Hahn WY et al (2005) Importance of small (〈 or = 20-mm) enhancing lesions seen only during the hepatic arterial phase at MR imaging of the cirrhotic liver: evaluation and comparison with whole explanted liver. Radiology 237:938–944

    Article  PubMed  Google Scholar 

  14. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS/CT-MRI-LI-RADS-v2018. Zugegriffen: 31.07.2018

  15. Hwang GJ, Kim MJ, Yoo HS et al (1997) Nodular hepatocellular carcinomas: detection with arterial-, portal-, and delayed-phase images at spiral CT. Radiology 202:383–388

    Article  PubMed  CAS  Google Scholar 

  16. Hyodo T, Murakami T, Imai Y et al (2013) Hypovascular nodules in patients with chronic liver disease: risk factors for development of hypervascular hepatocellular carcinoma. Radiology 266:480–490

    Article  PubMed  Google Scholar 

  17. Kadoya M, Matsui O, Takashima T et al (1992) Hepatocellular carcinoma: correlation of MR imaging and histopathologic findings. Radiology 183:819–825

    Article  PubMed  CAS  Google Scholar 

  18. Kang BK, Lim JH, Kim SH et al (2003) Preoperative depiction of hepatocellular carcinoma: ferumoxides-enhanced MR imaging versus triple-phase helical CT. Radiology 226:79–85

    Article  PubMed  Google Scholar 

  19. Kim JE, Kim SH, Lee SJ et al (2011) Hypervascular hepatocellular carcinoma 1 cm or smaller in patients with chronic liver disease: characterization with gadoxetic acid-enhanced MRI that includes diffusion-weighted imaging. AJR Am J Roentgenol 196:W758–W765

    Article  PubMed  Google Scholar 

  20. Kim JI, Lee JM, Choi JY et al (2008) The value of gadobenate dimeglumine-enhanced delayed phase MR imaging for characterization of hepatocellular nodules in the cirrhotic liver. Invest Radiol 43:202–210

    Article  PubMed  CAS  Google Scholar 

  21. Kim YK, Kim CS, Han YM et al (2009) Detection of hepatocellular carcinoma: gadoxetic acid-enhanced 3‑dimensional magnetic resonance imaging versus multi-detector row computed tomography. J Comput Assist Tomogr 33:844–850

    Article  PubMed  Google Scholar 

  22. Kim YK, Lee WJ, Park MJ et al (2012) Hypovascular hypointense nodules on hepatobiliary phase gadoxetic acid-enhanced MR images in patients with cirrhosis: potential of DW imaging in predicting progression to hypervascular HCC. Radiology 265:104–114

    Article  PubMed  Google Scholar 

  23. Kircher A, Bongartz G, Merkle EM, Zech CJ (2014) Rational imaging of hepatocellular carcinoma. The challenge of multimodal diagnostic criteria. Radiologe 54(7):664–672

    Article  PubMed  CAS  Google Scholar 

  24. Kono Y, Lyshchik A, Cosgrove D et al (2017) Contrast enhanced ultrasound (CEUS) liver imaging reporting and data system (LI-RADS[R]): the official version by the American College of Radiology (ACR). Ultraschall Med 38:85–86

    Article  PubMed  Google Scholar 

  25. De Ledinghen V, Laharie D, Lecesne R et al (2002) Detection of nodules in liver cirrhosis: spiral computed tomography or magnetic resonance imaging? A prospective study of 88 nodules in 34 patients. Eur J Gastroenterol Hepatol 14:159–165

    Article  PubMed  Google Scholar 

  26. Lee JY, Kim SH, Jeon YH et al (2010) Ferucarbotran-enhanced magnetic resonance imaging versus gadoxetic acid-enhanced magnetic resonance imaging for the preoperative detection of hepatocellular carcinoma: initial experience. J Comput Assist Tomogr 34:127–134

    Article  PubMed  Google Scholar 

  27. Lencioni R, Llovet JM (2010) Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 30:52–60

    Article  PubMed  CAS  Google Scholar 

  28. Luca A, Caruso S, Milazzo M et al (2010) Multidetector-row computed tomography (MDCT) for the diagnosis of hepatocellular carcinoma in cirrhotic candidates for liver transplantation: prevalence of radiological vascular patterns and histological correlation with liver explants. Eur Radiol 20:898–907

    Article  PubMed  Google Scholar 

  29. Marti-Bonmati L (1997) MR imaging characteristics of hepatic tumors. Eur Radiol 7:249–258

    Article  PubMed  CAS  Google Scholar 

  30. Matsui O (2004) Imaging of multistep human hepatocarcinogenesis by CT during intra-arterial contrast injection. Intervirology 47:271–276

    Article  PubMed  Google Scholar 

  31. Motosugi U, Ichikawa T, Sou H et al (2010) Distinguishing hypervascular pseudolesions of the liver from hypervascular hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging. Radiology 256:151–158

    Article  PubMed  Google Scholar 

  32. Muhi A, Ichikawa T, Motosugi U et al (2009) High-b-value diffusion-weighted MR imaging of hepatocellular lesions: estimation of grade of malignancy of hepatocellular carcinoma. J Magn Reson Imaging 30:1005–1011

    Article  PubMed  Google Scholar 

  33. Nishie A, Tajima T, Asayama Y et al (2011) Diagnostic performance of apparent diffusion coefficient for predicting histological grade of hepatocellular carcinoma. Eur J Radiol 80:e29–33

    Article  PubMed  Google Scholar 

  34. Onaya H, Itai Y (2000) MR imaging of hepatocellular carcinoma. Magn Reson Imaging Clin N Am 8:757–768

    PubMed  CAS  Google Scholar 

  35. Palmer DH, Cheng AL et al (2017) mRECIST to predict survival in advanced hepatocellular carcinoma: analysis of two randomised phase II trials comparing nintedanib vs sorafenib. Liver Int 37:1047–1055

    Article  PubMed  CAS  Google Scholar 

  36. Park MJ, Kim YK, Lee MW et al (2012) Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns. Radiology 264:761–770

    Article  PubMed  Google Scholar 

  37. Park MJ, Kim YK, Lee MH et al (2013) Validation of diagnostic criteria using gadoxetic acid-enhanced and diffusion-weighted MR imaging for small hepatocellular carcinoma (〈= 2.0 cm) in patients with hepatitis-induced liver cirrhosis. Acta radiol 54:127–136

    Article  PubMed  Google Scholar 

  38. Reimer P, Schneider G, Schima W (2004) Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiol 14:559–578

    Article  PubMed  Google Scholar 

  39. Rode A, Bancel B, Douek P et al (2001) Small nodule detection in cirrhotic livers: evaluation with US, spiral CT, and MRI and correlation with pathologic examination of explanted liver. J Comput Assist Tomogr 25:327–336

    Article  PubMed  CAS  Google Scholar 

  40. Rofsky NM, Lee VS, Laub G et al (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212:876–884

    Article  PubMed  CAS  Google Scholar 

  41. Saito K, Kotake F, Ito N et al (2005) Gd-EOB-DTPA enhanced MRI for hepatocellular carcinoma: quantitative evaluation of tumor enhancement in hepatobiliary phase. Magn Reson Med Sci 4:1–9

    Article  PubMed  Google Scholar 

  42. Seitz K, Milestone SDA (2016) Approval of CEUS for diagnostic liver imaging in adults and children in the USA. Ultraschall Med 37:229–232

    Article  PubMed  CAS  Google Scholar 

  43. Semaan S, Makkar J, Lewis S et al (2017) Imaging of hepatocellular carcinoma response after (90)Y radioembolization. AJR Am J Roentgenol 209:W263–W276

    Article  PubMed  Google Scholar 

  44. Shim JH, Lee HC, Kim SO et al (2012) Which response criteria best help predict survival of patients with hepatocellular carcinoma following chemoembolization? A validation study of old and new models. Radiology 262:708–718

    Article  PubMed  Google Scholar 

  45. Shinmura R, Matsui O, Kobayashi S et al (2005) Cirrhotic nodules: association between MR imaging signal intensity and intranodular blood supply. Radiology 237:512–519

    Article  PubMed  Google Scholar 

  46. Stoker J, Romijn MG, De Man RA et al (2002) Prospective comparative study of spiral computer tomography and magnetic resonance imaging for detection of hepatocellular carcinoma. Gut 51:105–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Strobel D, Kleinecke C, Hansler J et al (2005) Contrast-enhanced sonography for the characterisation of hepatocellular carcinomas: correlation with histological differentiation. Ultraschall Med 26:270–276

    Article  PubMed  CAS  Google Scholar 

  48. Strobel D, Seitz K, Blank W, Schuler A, Dietrich C, von Herbay A, Friedrich-Rust M et al (2008) Contrast-enhanced ultrasound for the characterization of focal liver lesions—diagnostic accuracy in clinical practice (DEGUM multicenter trial). Ultraschall Med 29:499–505

    Article  PubMed  CAS  Google Scholar 

  49. Taouli B, Vilgrain V, Dumont E et al (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226:71–78

    Article  PubMed  Google Scholar 

  50. Vincenzi B, Di Maio M, Silletta M et al (2015) Prognostic relevance of objective response according to EASL criteria and mRECIST criteria in hepatocellular carcinoma patients treated with loco-regional therapies: a literature-based Meta-analysis. PLoS ONE 10:e133488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Vogl TJ, Stupavsky A, Pegios W et al (1997) Hepatocellular carcinoma: evaluation with dynamic and static gadobenate dimeglumine-enhanced MR imaging and histopathologic correlation. Radiology 205:721–728

    Article  PubMed  CAS  Google Scholar 

  52. Xu PJ, Yan FH, Wang JH et al (2010) Contribution of diffusion-weighted magnetic resonance imaging in the characterization of hepatocellular carcinomas and dysplastic nodules in cirrhotic liver. J Comput Assist Tomogr 34:506–512

    Article  PubMed  Google Scholar 

  53. Zech CJ, Herrmann KA, Huber A et al (2004) High-resolution MR-imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion correction and respiratory triggering. J Magn Reson Imaging 20:443–450

    Article  PubMed  Google Scholar 

  54. Zech CJ, Schoenberg SO, Herrmann KA et al (2004) Modern visualization of the liver with MRT. Current trends and future perspectives. Radiologe 44:1160–1169

    Article  PubMed  CAS  Google Scholar 

  55. Zech CJ, Herrmann KA, Reiser MF et al (2007) MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent Gd-EOB-DTPA. Magn Reson Med Sci 6:43–52

    Article  PubMed  Google Scholar 

  56. Zech CJ, Grazioli L, Breuer J et al (2008) Diagnostic performance and description of morphological features of focal nodular hyperplasia in Gd-EOB-DTPA-enhanced liver magnetic resonance imaging: results of a multicenter trial. Invest Radiol 43:504–511

    Article  PubMed  Google Scholar 

  57. Zech CJ, Herrmann KA, Dietrich O et al (2008) Black-blood diffusion-weighted EPI acquisition of the liver with parallel imaging: comparison with a standard T2-weighted sequence for detection of focal liver lesions. Invest Radiol 43:261–266

    Article  PubMed  Google Scholar 

  58. Zech CJ, Vos B, Nordell A et al (2009) Vascular enhancement in early dynamic liver MR imaging in an animal model: comparison of two injection regimen and two different doses Gd-EOB-DTPA (gadoxetic acid) with standard Gd-DTPA. Invest Radiol 44:305–310

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ricke.

Ethics declarations

Interessenkonflikt

C.J. Zech und J. Ricke weisen auf folgende Interessenkonflikte hin: C.J. Zech – Advisory Board und Vortragshonorare von Bayer Healthcare; J. Ricke Research grant und Advisory board Bayer healthcare. A. Potthoff gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zech, C.J., Potthoff, A. & Ricke, J. Bildgebende radiologische Diagnostik und Verlaufsbeurteilung beim HCC. Onkologe 24, 680–691 (2018). https://doi.org/10.1007/s00761-018-0435-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-018-0435-7

Schlüsselwörter

Keywords

Navigation