Skip to main content

Advertisement

Log in

Antineoplastic activity of plant-derived compounds mediated through inhibition of histone deacetylase: a review

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In the combat of treating cancer recent therapeutic approaches are focused towards enzymatic targets as they occupy a pivotal participation in the cascade of oncogenesis and malignancy. There are several enzymes that modulate the epigenetic pathways and chromatin structure related to cancer mutation. Among several epigenetic mechanisms such as methylation, phosphorylation, and sumoylation, acetylation status of histones is crucial and is governed by counteracting enzymes like histone acetyl transferase (HAT) and histone deacetylases (HDAC) which have contradictory effects on the histone acetylation. HDAC inhibition induces chromatin relaxation which forms euchromatin and thereby initiates the expression of certain transcription factors attributed with apoptosis, which are mostly correlated with the expression of the p21 gene and acetylation of H3 and H4 histones. Most of the synthetic and natural HDAC inhibitors elicit antineoplastic effect through activation of various apoptotic pathways and promoting cell cycle arrest at various phases. Due to their promising chemo preventive action and low cytotoxicity against normal host cells, bioactive substances like flavonoids, alkaloids, and polyphenolic compounds from plants have recently gained importance. Even though all bioactive compounds mentioned have an HDAC inhibitory action, some of them have a direct effect and others enhance the effects of the standard well known HDAC inhibitors. In this review, the action of plant derived compounds against histone deacetylases in a variety of in vitro cancer cell lines and in vivo animal models are articulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data supporting this review are available within the paper.

References

  • Abosharaf HA, Diab T, Atlam FM, Mohamed TM (2020) Osthole extracted from a citrus fruit that affects apoptosis on A549 cell line by histone deacetylasese inhibition (HDACs). Biotech Rep 28:e00531

    Article  Google Scholar 

  • Alvarez MC, Maso V, Torello CO, Ferro KP, Saad STO (2018) The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes. Clin Epigenetics 10:1–11

    Article  Google Scholar 

  • Amjad E, Sokouti B, Asnaashari S (2022) A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell Int. 22(1):22

    Article  Google Scholar 

  • Anantharaju PG, Reddy DB, Padukudru MA, Chitturi CMK, Vimalambike MG, Madhunapantula SV (2017) Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC). PLoS ONE 12:e0186208

    Article  PubMed  PubMed Central  Google Scholar 

  • Attoub S, Hassan AH, Vanhoecke B, Iratni R, Takahashi T, Gaben AM, Bracke M, Awad S, John A, Kamalboor HA, Al Sultan MA (2011) Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. Eur J Pharmacol 651:18–25

    Article  CAS  PubMed  Google Scholar 

  • Bai H, Jin H, Yang F, Zhu H, Cai J (2014) Apigenin Induced MCF-7- Cell apoptosis-associated reactive oxygen species. Scanning 36:622–631

    Article  CAS  PubMed  Google Scholar 

  • Bartl S, Taplick J, Lagger G, Khier H, Kuchler K, Seiser C (1997) Identification of mouse histone deacetylase 1 as a growth factor-inducible gene. Mol Cell Biol 17:5033–5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger A, Venturelli S, Kallnischkies M, Bocker A, Busch C, Weiland T, Noor S, Leischner C, Weiss TS, Lauer UM, Bischoff SC (2013) Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem 24:977–985

    Article  CAS  PubMed  Google Scholar 

  • Biersack B, Nitzsche B, Hopfner M (2022) HDAC inhibitors with potential to overcome drug resistance in castration-resistant prostate cancer. Cancer Drug Resistance 5:64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73(1):417–435

    Article  CAS  PubMed  Google Scholar 

  • Boily G, He XH, Pearce B, Jardine K, McBurney MW (2009) SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 28:2882–2893

    Article  CAS  PubMed  Google Scholar 

  • Bose P, Dai Y, Grant S (2014) Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 143:323–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byun MR, Lee DH, Jang YP, Lee HS, Choi JW, Lee SK (2019) Repurposing natural products as novel HDAC inhibitors by comparative analysis of gene expression profiles. Phytomedicine 59:152900

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Guanizo AC, Jakasekara WSN, Inampudi C, Luong Q, Garama DJ, Alamgeer M, Thakur N, DeVeer M, Ganju V, Watkins DN (2023) MYC drives platinum resistant SCLC that is overcome by the dual PI3K-HDAC inhibitor fimepinostat. J Exp Clin Cancer Res 42:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi SY, Kee HJ, Jin L, Ryu Y, Sun S, Kim GR, Jeong MH (2018) Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat. Biomed Pharmacother 101:145–154

    Article  CAS  PubMed  Google Scholar 

  • Chun P (2015) Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res 38:933–949

    Article  CAS  PubMed  Google Scholar 

  • Ciesielski O, Biesiekierska M, Balcerczyk A (2020) Epigallocatechin-3-gallate (EGCG) alters histone acetylation and methylation and impacts chromatin architecture profile in human endothelial cells. Molecules 25:2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Closse A, Huguenin R (1974) Isolierung und strukturaufklärung von chlamydocin. Helv Chim Acta 57:533–545

    Article  CAS  PubMed  Google Scholar 

  • Dhar S, Kumar A, Li K, Tzivion G, Levenson AS (2015) Resveratrol regulates PTEN/Akt pathway through inhibition of MTA1/HDAC unit of the NuRD complex in prostate cancer. Biochim Biophys Acta Mol Cell Res 1853:265–275

    Article  CAS  Google Scholar 

  • Di Bello E, Noce B, Fioravanti R, Mai A (2022) Current HDAC inhibitors in clinical trials. Chimia 76:448–448

    Article  CAS  PubMed  Google Scholar 

  • Druesne N, Pagniez A, Mayeur C, Thomas M, Cherbuy C, Duee PH, Martel P, Chaumontet C (2004) Diallyl disulfide (DADS) increases histone acetylation and p21waf1/cip1 expression in human colon tumor cell lines. Carcinogenesis 25:1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94:10367–10372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallah MS, Szarics D, Robson CM, Eubanks JH (2021) Impaired regulation of histone methylation and acetylation underlies specific neurodevelopmental disorders. Front. Genet. 11:613098

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganai SA, Baba SFA (2021b) Plant flavone Chrysin as an emerging histone deacetylase inhibitor for prosperous epigenetic-based anticancer therapy. Phytother Res 35:823–834

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA, Sheikh FA, Baba ZA, Mir MA, Mantoo MA, Yatoo MA (2021a) Anticancer activity of the plant flavonoid luteolin against preclinical models of various cancers and insights on different signalling mechanisms modulated. Phytother Res 35:3509–3532

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA and Ganai SA (2019) Different groups of HDAC inhibitors based on various classifications. Histone deacetylase inhibitors—epidrugs for neurological disorders. 33-38

  • Gibbs A, Schwartzman J, Deng V, Alumkal J (2009) Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci USA 106:16663–16668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26(37):5420–5432

    Article  CAS  PubMed  Google Scholar 

  • Golabek K, Strzelczyk J, Wiczkowski A, Michalski M (2015) Potential use of histone deacetylase inhibitors in cancer therapy. Contemp Oncol 19(6):436–440

    CAS  Google Scholar 

  • Groh IAM, Chen C, Luske C, Cartus AT, Esselen M (2013) Plant polyphenols and oxidative metabolites of the herbal alkenylbenzene methyleugenol suppress histone deacetylase activity in human colon carcinoma cells. J. Nutr. Metab. 2013.

  • Gui CY, Ngo L, Xu WS, Richon VM, Marks PA (2004) Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci 101:1241–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han M, Jia L, Lv W, Wang L, Cui W (2019) Epigenetic enzyme mutations: role in tumorigenesis and molecular inhibitors. Front Oncol 9:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauser AT, Jung M (2008) Targeting epigenetic mechanisms: potential of natural products in cancer chemoprevention. Planta Med 74:1593–1601

    Article  CAS  PubMed  Google Scholar 

  • Herold C, Ganslmayer M, Ocker M, Hermann M, Geert A, Schuppan HEG (2002) The histone-deacetylase inhibitor Trichostatin A blocks proliferation and triggers apoptotic programs in hepatoma cells. J Hepatol 36:233–240

    Article  CAS  PubMed  Google Scholar 

  • Ho E, Clarke JD, Dashwood RH (2009) Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 139:2393–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, Hooi RGC (2005) Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase1. Cell Death Differ 12:395–404

    Article  CAS  PubMed  Google Scholar 

  • Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A, Altucci L, Nervi C, Minucci S, Pelicci PG (2005) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11:71–76

    Article  CAS  PubMed  Google Scholar 

  • Jang YG, Hwang KA, Choi KC (2018) Rosmarinic acid, a component of rosemary tea, induced the cell cycle arrest and apoptosis through modulation of HDAC2 expression in prostate cancer cell lines. Nutrients 10:1784

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang YG, Ko EB, Choi KC (2020) Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J Nutr Biochem 84:108444

    Article  CAS  PubMed  Google Scholar 

  • Jeong JB, Choi J, Lou Z, Jiang X, Lee SH (2013) Patchouli alcohol, an essential oil of Pogostemon cablin, exhibits anti-tumorigenic activity in human colorectal cancer cells. Int Immunopharmacol 16:184–190

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Zhou S, Zhang Y, Ye H, Jiang S, Yu K, Ma Y (2016) Lycorine induces cell death in MM by suppressing Janus Kinase/signal transducer and activator of transcription via inducing the expression of SOCS1. Biomed Pharmacother 84:1645–1653

    Article  CAS  PubMed  Google Scholar 

  • Kalaiarasi A, Anusha C, Sankar R, Rajasekaran S, John Marshal J, Muthusamy K, Ravikumar V (2016) Plant isoquinoline alkaloid berberine exhibits chromatin remodeling by modulation of histone deacetylase to induce growth arrest and apoptosis in the A549 cell line. J Agric Food Chem 64:9542–9550

    Article  CAS  PubMed  Google Scholar 

  • Kanwal R, Gupta S (2012) Epigenetic Modifications in Cancer. Clin Genet 81:303–311

    Article  CAS  PubMed  Google Scholar 

  • Kedhari Sundaram M, Hussain A, Haque S, Raina R, Afroze N (2019) Quercetin modifies 5′ CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J Cell Biochem 120:18357–18369

    Article  CAS  PubMed  Google Scholar 

  • Khan O, La Thangue NB (2012) HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol 90:85–94

    Article  CAS  PubMed  Google Scholar 

  • Kim TW, Lee SY, Kim M, Cheon C, Ko SG (2018) Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis 9:875

    Article  PubMed  PubMed Central  Google Scholar 

  • Klingl YE, Pakravan D, Van Den Bosch L (2021) Opportunities for histone deacetylase inhibition in amyotrophic lateral sclerosis. Br J Pharmacol 178:1353–1372

    Article  CAS  PubMed  Google Scholar 

  • Lagger G, O’Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T, Seiser C (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:2672–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lascano S, Lopez M, Arimondo PB (2018) Natural products and chemical biology tools: alternatives to target epigenetic mechanisms in cancers. Chem Rec 18:1854

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Park SB, Kim SA, Kwon SK, Cha H, Lee DY, Ro S, Cho JM, Song SY (2017) A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance. Sci Rep 7:1–9

    Google Scholar 

  • Lee SH, Lee JH, Lee HY, Min KJ (2019) Sirtuin signaling in cellular senescence and aging. BMB Rep 52:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Dai HJ, Ye M, Wang SL, Xiao XJ, Zheng J, Chen HY, Luo YH, Liu J (2012) Lycorine induces cell-cycle arrest in the G0/G1 phase in K562 cells via HDAC inhibition. Cancer Cell Int 12:1–6

    Article  Google Scholar 

  • Li G, Tian Y, Zhu WG (2020) The roles of histone deacetylases and their inhibitors in cancer therapy. Front Cell Dev Biol 8:576946

    Article  PubMed  PubMed Central  Google Scholar 

  • Maemoto Y, Shimizu Y, Katoh R, Ito A (2021) Naturally occurring small molecule compounds that target histone deacetylases and their potential applications in cancer therapy. J Antibiot 74:667–676

    Article  CAS  Google Scholar 

  • Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R, Simeoni S, Ragno R (2005) Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev 25:261–309

    Article  CAS  PubMed  Google Scholar 

  • Mani R, Natesan V (2018) Chrysin: sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 145:187–196

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Matsutani S, Sugita K, Yoshida H, Hayashi F, Terui Y, Nakai H, Uotani N, Kawamura Y, Matsumoto K, Shoji JJ (1992) Depudecin: a novel compound inducing the flat phenotype of nih3t3 cells doubly transformed by ras-and src-oncogene, produced by Alternaria brassicicola. J Antibiot 45:879–885

    Article  CAS  Google Scholar 

  • Menezes J, Orlikova B, Morceau F, Diederich M (2016) Natural and synthetic flavonoids: structure–activity relationship and chemotherapeutic potential for the treatment of leukemia. Crit Rev Food Sci Nutr 56:S4–S28

    Article  CAS  PubMed  Google Scholar 

  • Monneret C (2005) Histone deacetylase inhibitors. Eur J Med Chem 40:1–13

    Article  CAS  PubMed  Google Scholar 

  • Moore D (2016) Panobinostat (Farydak): a novel option for the treatment of relapsed or relapsed and refractory multiple myeloma. Pharmacy Therapeutics 41:296

    PubMed  PubMed Central  Google Scholar 

  • Myzak MC, Karplus PA, Chung FL, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774

    Article  CAS  PubMed  Google Scholar 

  • Nagai H, Kim YH (2017) Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis 9:448

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakao Y, Yoshida S, Matsunaga S, Shindoh N, Terada Y, Nagai K, Yamashita JK, Ganesan A, Van Soest RW, Fusetani N (2006) Azumamides A-E: histone deacetylase inhibitory cyclic tetrapeptides from the marine sponge Mycale izuensis. Angew Chem 118:7715–7719

    Article  Google Scholar 

  • Nian H, Delage B, Ho E, Dashwood RH (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pająk B, Siwiak-Niedbalska E, Jaskiewicz A, Sołtyka M, Zielinski R, Domoradzki T, Fokt I, Skora S, Priebe W (2021) Synergistic anticancer effect of glycolysis and histone deacetylases inhibitors in a glioblastoma model. Biomed 9:1749

    Google Scholar 

  • Pandey M, Kaur P, Shukla S, Abbas A, Fu P, Gupta S (2012) Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study. Mol Carcinog J 51:952–962

    Article  CAS  Google Scholar 

  • Park SY, Kim JS (2020) A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med 52:204–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perri F, Longo F, Giuliano M, Sabbatino F, Favia G, Ionna F, Addeo R, Scarpati GDV, Di Lorenzo G, Pisconti S (2017) Epigenetic control of gene expression: potential implications for cancer treatment. Crit Rev Oncol Hematol 111:166–172

    Article  CAS  PubMed  Google Scholar 

  • Raina R, Almutary AG, Bagabir SA, Afroze N, Fagoonee S, Haque S, Hussain A (2022) Chrysin modulates aberrant epigenetic variations and hampers migratory behavior of human cervical (HeLa) cells. Front Genet 12:2678

    Article  Google Scholar 

  • Rajendran P, Ho E, Williams DE, Dashwood RH (2011) Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics 3:1–23

    Article  Google Scholar 

  • Relles D, Chipitsyna GI, Gong Q, Yeo CJ, Arafat HA (2016) Thymoquinone promotes pancreatic cancer cell death and reduction of tumor size through combined inhibition of histone deacetylation and induction of histone acetylation. Adv Preventive Med. https://doi.org/10.1155/2016/1407840

    Article  Google Scholar 

  • Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci 97:10014–10019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruela-de-Sousa RR, Fuhler GM, Blom N, Ferreira CV, Aoyama H, Peppelenbosch MP (2010) Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy. Cell Death and Dis 1:e19

    Article  CAS  Google Scholar 

  • Ruijter AJD, Gennip AHV, Caron HN, Kemp S, Kuilenburg ABV (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370:737–749

    Article  PubMed  PubMed Central  Google Scholar 

  • Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, Lucarini M, Santini A, Souto EB, Novellino E, Antolak H (2019) The therapeutic potential of apigenin. Int J Mol Sci 20(6):1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders LR, Verdin EL (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26:5489–5504

    Article  CAS  PubMed  Google Scholar 

  • Sawas A, Radeski D, O’Connor OA (2015) Belinostat in patients with refractory or relapsed peripheral T-cell lymphoma: a perspective review. Ther Adv Hematol 6:202–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scafuri B, Bontempo P, Altucci L, De Masi L, Facchiano A (2020) Molecular docking simulations on histone deacetylases (Hdac)-1 and-2 to investigate the flavone binding. Biomedicines 8:568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senawong T, Misuna S, Khaopha S, Nuchadomrong S, Sawatsitang P, Phaosiri C, Surapaitoon A, Sripa B (2013) Histone deacetylase (HDAC) inhibitory and antiproliferative activities of phenolic-rich extracts derived from the rhizome of Hydnophytum formicarum Jack.: sinapinic acid acts as HDAC inhibitor. BMC Complement Altern Med 13:1–11

    Article  Google Scholar 

  • Seo HS, Ku JM, Choi HS, Woo JK, Jang BH, Go H, Ko SG (2015) Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cells. Mol Med Rep 12:2977–2984

    Article  CAS  PubMed  Google Scholar 

  • Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanmugam G, Rakshit S, Sarkar K (2022) HDAC inhibitors: targets for tumor therapy, immune modulation and lung diseases. Translational Oncology 16:101312

    Article  CAS  PubMed  Google Scholar 

  • Singh SB, Zink DL, Polishook JD, Dombrowski AW, Darkin-Rattray SJ, Schmatz DM, Goetz MA (1996) Apicidins: Novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum. Tetrahedron Lett 37:8077–8080

    Article  CAS  Google Scholar 

  • Singh T, Prasad R, Katiyar SK (2013) Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and induction of cell death in vitro and in vivo. Epigenet 8:54–65

    Article  CAS  Google Scholar 

  • Singh AK, Bishayee A, Pandey AK (2018) Targeting histone deacetylases with natural and synthetic agents: an emerging anticancer strategy. Nutrients 10:731

    Article  PubMed  PubMed Central  Google Scholar 

  • Soflaei SS, Momtazi-Borojeni AA, Majeed M, Derosa G, Maffioli P, Sahebkar A (2018) Curcumin: a natural pan-HDAC inhibitor in cancer. Curr Pharm Des 24:123–129

    Article  CAS  PubMed  Google Scholar 

  • Son IH, Chung IM, Lee SI, Yang HD, Moon HI (2007) Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 17:4753–4755

    Article  CAS  PubMed  Google Scholar 

  • Sonnemann J, Hartwig M, Plath A, Saravana Kumar K, Muller C, Beck J (2006) Histone deacetylase inhibitors require caspase activity to induce apoptosis in lung and prostate carcinoma cells. Cancer Lett 232:148–160

    Article  CAS  PubMed  Google Scholar 

  • Sowa Y, Orita T, Minamikawa S, Nakano K, Mizuno T, Nomura H, Sakai T (1997) Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem Biophys Res Commun 241:142–150

    Article  CAS  PubMed  Google Scholar 

  • Sun LP, Chen AL, Hung HC, Chien YH, Huang JS, Huang CY, Chen YW, Chen CN (2012) Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis. J Agric Food Chem 60:11748–11758

    Article  CAS  PubMed  Google Scholar 

  • Suraweera A, O’Byrne KJ, Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front OncoL 8:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabudravu JN, Eijsink VGH, Gooday GW, Jaspars M, Komander D, Legg M, Synstad B, Fvan Aalten DM (2002) Psammaplin A, a chitinase inhibitor isolated from the fijian marine sponge Aplysinella rhax. Bioorg Med Chem 10:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Takagaki N, Sowa Y, Oki T, Nakanishi R, Yogosawa S, Sakai T (2005) Apigenin induces cell cycle arrest and p21/WAF1 expression in a p53-independent pathway. Int J Oncol 26:185–189

    CAS  PubMed  Google Scholar 

  • Taori K, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130:1806–1807

    Article  CAS  PubMed  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    Article  CAS  PubMed  Google Scholar 

  • Tomooka F, Kaji K, Nishimura N, Kubo T, Iwai S, Shibamoto A, Suzuki J, Kitagawa K, Namisaki T, Akahane T, Mitoro A (2023) Sulforaphane potentiates gemcitabine-mediated anti-cancer effects against intrahepatic cholangiocarcinoma by inhibiting HDAC activity. Cells 12:687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tracy PA, Sobolewski MD, Davidson NE (2007) Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther 6:1013–1021

    Article  Google Scholar 

  • Tseng TH, Chien MH, Lin WL, Wen YC, Chow JM, Chen CK, Kuo TC, Lee WJ (2017) Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expression. Environ Toxicol 32:434–444

    Article  CAS  PubMed  Google Scholar 

  • Uba AI, Zengin G (2023) Phenolic compounds as histone deacetylase inhibitors: binding propensity and interaction insights from molecular docking and dynamics simulations. Amino Acids. 1–15.

  • Venturelli S, Berger A, Böcker A, Busch C, Weiland T, Noor S, Leischner C, Schleicher S, Mayer M, Weiss TS, Bischoff SC (2013) Resveratrol as a pan-HDAC inhibitor alters the acetylation status of jistone proteins in human-derived hepatoblastoma cells. PLoS ONE 8(8):73097

    Article  Google Scholar 

  • Wei GJ, Chao YH, Tung YC, Wu TY, Su ZY (2019) A tangeretin derivative inhibits the growth of human prostate cancer LNCaP cells by epigenetically restoring p21 gene expression and inhibiting cancer stem-like cell proliferation. AAPS J 21:1–12

    Article  Google Scholar 

  • Xiao H, Hasegawa T, Isobe K (1999) Both Sp1 and Sp3 are responsible for p21waf1 promoter activity induced by histone deacetylase inhibitor in NIH3T3 cells. J Cell Biochem 73:291–302

    Article  CAS  PubMed  Google Scholar 

  • Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Tracy HY, Wu Sharon SY, Leung and Kenneth KW, (2020) Flavonoids potentiated anticancer activity of cisplatin in non-small cell lung cancer cells in vitro by inhibiting histone deacetylases. Life Sci 258:118211

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265:17174–17179

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li H, Hu P, Qing Y, Wang X, Zhu M, Wang H, Wang Z, Xu J, Guo Q, Hui H (2020) Natural HDAC-1/8 inhibitor baicalein exerts therapeutic effect in CBF-AML. Clin Transl Med 10:e154

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo Q, Wu R, Xiao X, Yang C, Yang Y, Wang C, Lin L, Kong AN (2018) The dietary flavone luteolin epigenetically activates the Nrf2 pathway and blocks cell transformation in human colorectal cancer HCT116 cells. J Cell Biochem 119:9573–9582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author 1,3 and 6 contributed in preparation of the manuscript, its reviewing and editing. Author 2, 4 and 5 contributed in preparation of tables and designing the figures. All authors contributed to the article.

Corresponding author

Correspondence to A. R. Nisha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling editor: P. Meffre.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajaselvi, N.D., Jida, M.D., Ajeeshkumar, K.K. et al. Antineoplastic activity of plant-derived compounds mediated through inhibition of histone deacetylase: a review. Amino Acids 55, 1803–1817 (2023). https://doi.org/10.1007/s00726-023-03298-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-023-03298-x

Keywords

Navigation