Skip to main content
Log in

A metabolic study to decipher amino acid catabolism-directed biofuel synthesis in Acetoanaerobium sticklandii DSM 519

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia-producing anaerobe. It has the ability to produce organic solvents and acids from protein catabolism through Stickland reactions and specialized pathways. Nevertheless, its protein catabolism-directed biofuel production has not yet been understood. The present study aimed to decipher such growth-associated metabolic potential of this organism at different growth phases using metabolic profiling. A seed culture of this organism was grown separately in metabolic assay media supplemented with gelatin and or a mixture of amino acids. The extracellular metabolites produced by this organism were qualitatively analyzed by gas chromatography–mass spectrometry platform. The residual amino acids after protein degradation and amino acids assimilation were identified and quantitatively measured by high-performance liquid chromatography (HPLC). Organic solvents and acids produced by this organism were detected and the quantity of them determined with HPLC. Metabolic profiling data confirmed the presence of amino acid catabolic products including tyramine, cadaverine, methylamine, and putrescine in fermented broth. It also found products including short-chain fatty acids and organic solvents of the Stickland reactions. It reported that amino acids were more appropriate for its growth yield compared to gelatin. Results of quantitative analysis of amino acids indicated that many amino acids either from gelatin or amino acid mixture were catabolised at a log-growth phase. Glycine and proline were poorly consumed in all growth phases. This study revealed that apart from Stickland reactions, a specialized system was established in A. sticklandii for protein catabolism-directed biofuel production. Acetone–butanol–ethanol (ABE), acetic acid, and butyric acid were the most important biofuel components produced by this organism. The production of these components was achieved much more on gelatin than amino acids. Thus, A. sticklandii is suggested herein as a potential organism to produce butyric acid along with ABE from protein-based wastes (gelatin) in bio-energy sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreesen JR, Bahl H, Gottschalk G (1989) Introduction to the physiology and biochemistry of the genus Clostridium. In: Minton NP, Clarke DC (eds) Clostridia, vol 3. Plenum Press, New York, pp 27–62

    Chapter  Google Scholar 

  • Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol. https://doi.org/10.1155/2014/463074

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker HA (1981) Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50:23–40

    Article  CAS  PubMed  Google Scholar 

  • Bednarski B, Andreesen JR, Pich A (2001) In vitro processing of the proproteins GrdE of protein B of glycine reductase and PrdA of d-proline reductase from Clostridium sticklandii: formation of a pyruvoyl group from a cysteine residue. Eur J Biochem 268:3538–3544

    Article  CAS  PubMed  Google Scholar 

  • Burrell M, Hanfrey CC, Kinch LN, Elliott KA, Michael AJ (2012) Evolution of a novel lysine decarboxylase in siderophore biosynthesis. Mol Microbiol 86:485–499

    Article  CAS  PubMed  Google Scholar 

  • Cere V, Mazzini C, Paolucci C, Pollicino S, and Fava A (1993) Dihyro- and tetrahydrofuran building blocks from 1,4:3,6-dianhydromannitol. 1. Synthesis of (1S,5R,7R)-endo-(−)- and (1S,5R,7S)-(−)-exo-brevicomin and (R)-(+)-dodecanolide. J Org Chem 58, 17, 4567–4571

  • Chellapandi P, Uma L (2012a) Evaluation of methanogenic activity of biogas plant slurry on ossein factory wastes. J Environ Sci Eng 54:10–13

    CAS  PubMed  Google Scholar 

  • Chellapandi P, Uma L (2012b) Co-digestion of ossein factory waste for methane production in batch. Elixer Biotechnol 42:6383–6385

    Google Scholar 

  • Chellapandi P, Prabaharan D, Uma L (2008) A preliminary study on co-digestion of ossein factory waste for methane production. EurAsian J Biosci 2:110–114

    Google Scholar 

  • Chellapandi P, Prabaharan D, Uma L (2010) Evaluation of methanogenic activity of biogas plant slurry for monitoring codigestion of ossein factory wastes and cyanobacterial biomass. Appl Biochem Biotechnol 162:524–535

    Article  CAS  PubMed  Google Scholar 

  • Choi BK, Cha BY, Fujiwara T, Kanamoto A, Woo JT, Ojika M, Imokawa G (2013) Arenarol isolated from a marine sponge abrogates endothelin-1-stimulated melanogenesis by interrupting MEK phosphorylation in normal human melanocytes. Cytotechnology 65:915–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi KY, Wernick DG, Tat CA, Liao JC (2014) Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng 23:53–61

    Article  CAS  PubMed  Google Scholar 

  • Cohen SS (1997) A guide to the polyamines. Oxford University Press, New York

    Google Scholar 

  • Croese E, Keesman KJ, Widjaja-Greefkes AH, Geelhoed JS, Plugge CM, Sleutels TH, Stams AJ, Euverink GJ (2013) Relating MEC population dynamics to anode performance from DGGE and electrical data. Syst Appl Microbiol 36:408–416

    Article  CAS  PubMed  Google Scholar 

  • Eram MS, Ma K (2013) Decarboxylation of pyruvate to acetaldehyde for ethanol production by hyperthermophiles. Biomolecules 3:578–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández de Palencia P, Fernández M, Mohedano ML, Ladero V, Quevedo C, Alvarez MA, López P (2011) Role of tyramine synthesis by food-borne Enterococcus durans in adaptation to the gastrointestinal tract environment. Appl Environ Microbiol 77:699–702

    Article  CAS  PubMed  Google Scholar 

  • Flythe M, Kagan I (2010) Antimicrobial effect of red clover (Trifolium pratense) phenolic extract on the ruminal hyper ammonia-producing bacterium, Clostridium sticklandii. Curr Microbiol 61:125–131

    Article  CAS  PubMed  Google Scholar 

  • Galperin MY, Brover V, Tolstoy I, Yutin N et al (2016) Phylogenomic analysis of the family Peptostreptococcaceae (Clostridium cluster XI) and proposal for reclassification of Clostridium litorale (Fendrich et al. 1991) and Eubacterium acidaminophilum (Zindel et al. 1989) as Peptoclostridium litorale gen. nov. comb. nov. and Peptoclostridium acidaminophilum comb. nov. Int J Syst Evol Microbiol 66:5506–5513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golovchenko NP, Belokopytov BF, Akimenko VK (1982) Catabolism of threonine in the bacterium Clostridium sticklandii. Biokhimiia 47:1159–1164

    CAS  PubMed  Google Scholar 

  • Gómez-Alonso A, García-Criado FJ, Parreño-Manchado FC, García-Sánchez JE, García-Sánchez E, Parreño-Manchado A, Zambrano-Cuadrado Y (2007) Study of the efficacy of coated VICRYL plus Antibacterial suture (coated Polyglactin 910 suture with Triclosan) in two animal models of general surgery. J Infect 54:82–88

    Article  PubMed  Google Scholar 

  • Graentzdoerffer A, Pich A, Andreesen JR (2001) Molecular analysis of the grd operon coding for genes of the glycine reductase and of the thioredoxin system from Clostridium sticklandii. Arch Microbiol 175:8–18

    Article  CAS  PubMed  Google Scholar 

  • Guan W, Xu G, Duan J, Shi S (2018) Acetone–Butanol–Ethanol production from fermentation of hot-water-extracted hemicellulose hydrolysate of pulping woods. Ind Eng Chem 57:775–783

    Article  CAS  Google Scholar 

  • Harty M, Nagar M, Atkinson L, Legay CM, Derksen DJ, Bearne SL (2014) Inhibition of serine and proline racemases by substrate-product analogues. Bioorg Med Chem Lett 24:390–393

    Article  CAS  PubMed  Google Scholar 

  • Herrmann G, Jayamani E, Mai G, Buckel W (2008) Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 190:784–791

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Singh V, Qureshi N (2015) Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution. Biotechnol Biofuels 8:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jancewicz AL, Gibbs NM, Masson PH (2016) Cadaverine’s functional role in plant development and environmental response. Front Plant Sci 7:870

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabisch U, Gräntzdörffer A, Schierhorn A, Rücknagel KP, Andreesen JR, Pich A (1999) Identification of d-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein. J Biol Chem 274:8445–8454

    Article  CAS  PubMed  Google Scholar 

  • Kenklies J, Ziehn R, Fritsche K, Pich A, Andreesen JR (1999) Proline biosynthesis from l-ornithine in Clostridium sticklandii: purification of delta1-pyrroline-5-carboxylate reductase, and sequence and expression of the encoding gene, proC. Microbiol 145:819–826

    Article  CAS  Google Scholar 

  • Kitakaze T, Sakamoto T, Kitano T, Inoue N, Sugihara F, Harada N, Yamaji R (2016) The collagen derived dipeptide hydroxyprolyl-glycine promotes C2C12 myoblast differentiation and myotube hypertrophy. Biochem Biophys Res Commun 478:1292–1297

    Article  CAS  PubMed  Google Scholar 

  • Kolesinska B, Fraczyk J, Binczarski M, Modelska M, Berlowska J, Dziugan P, Antolak H, Kaminski ZJ, Witonska IA, Kregiel D (2019) Butanol synthesis routes for biofuel production: trends and perspectives. Materials (Basel) 12:350

    Article  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Al E (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Marcobal A, De las Rivas B, Landete JM, Tabera L, Muñoz R (2012) Tyramine and phenylethylamine biosynthesis by food bacteria. Crit Rev Food Sci Nutr 52:448–467

    Article  CAS  PubMed  Google Scholar 

  • Mead GC (1971) The amino acid-fermenting Clostridia. J Gen Microbiol 67:47–56

    Article  CAS  PubMed  Google Scholar 

  • Metsalu T, Vilo J (2015) ClustVis a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43:W566–W570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M (2015) Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 427:3389–3406

    Article  CAS  PubMed  Google Scholar 

  • Nisman B (1954) The Stickland reaction. Bacteriol Rev 18:16–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pugin B, Barcik W, Westermann P, Heider A, Wawrzyniak M, Hellings P, Akdis CA, O’Mahony L (2017) A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microb Ecol Health Dis 28:1353881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–257

    Article  CAS  PubMed  Google Scholar 

  • Rhee HJ, Kim EJ, Lee JK (2007) Physiological polyamines: simple primordial stress molecules. J Cell Mol Med 11:685–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez S, Arnold LD (2008) Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 1:283–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangavai C, Chellapandi P (2017) Amino acid catabolism-directed biofuel production in Clostridium sticklandii: an insight into model-driven systems engineering. Biotechnol Rep 16:32–43

    Article  CAS  Google Scholar 

  • Sangavai C, Bharathi M, Acharya KP, Prajapati KP, Parmar HB, Shilpkar PK, Chellapandi P (2019) Evaluation of the biomethanation potential of enriched methanogenic cultures on gelatin. Bioresour Bioprocess. https://doi.org/10.1186/s40643-019-0247-7

    Article  Google Scholar 

  • Schäfer R, Schwartz AC (1976) Catabolism of purines in Clostridium sticklandii. Zentralbl. Bakteriol Orig 235:165–172

    Google Scholar 

  • Schneider J, Wendisch VF (2011) Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol 91:17–30

    Article  CAS  PubMed  Google Scholar 

  • Schönicke P, Shahab R, Kamm B (2015) Microbial life on green biomass and their use for production of platform chemicals. In: Kamm B (ed) Microorganisms in biorefineries, microbiol monographs, vol 26, pp 21–49

  • Schwartz ACV, Schäfer R (1973) New amino acids, and heterocyclic compounds participating in the Stickland reaction of Clostridium sticklandii. Arch Microbiol 93:267–276

    CAS  Google Scholar 

  • Schwartz AC, Quecke W, Brenschede G (1979) Inhibition by glycine of the catabolic reduction of proline in Clostridium sticklandii: evidence on the regulation of amino acid reduction. Z Allg Mikrobiol 19:211–220

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Swiatlo E (2008) A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol 68:4–16

    Article  CAS  PubMed  Google Scholar 

  • Shen D, Yin J, Yu X, Wang M, Long Y, Shentu J, Chen T (2017) Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids. Bioresour Technol 227:125–132

    Article  CAS  PubMed  Google Scholar 

  • Shimizu J, Asami N, Kataoka A, Sugihara F, Inoue N, Kimira Y, Wada M, Mano H (2015) Oral collagen-derived dipeptides, prolyl-hydroxyproline and hydroxyprolyl-glycine, ameliorate skin barrier dysfunction and alter gene expression profiles in the skin. Biochem Biophys Res Commun 456:626–630

    Article  CAS  PubMed  Google Scholar 

  • Stadtman TC, McClung LS (1957) Clostridium sticklandii nov. spec. J Bacteriol 73:218–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtman TC, White FH (1954) Tracer studies on ornithine, lysine, and formate metabolism in an amino acid fermenting clostridium. J Bacteriol 67:651–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stickland LH (1934) Studies in the metabolism of the strict anaerobes (genus Clostridium): the chemical reactions by which Clostridium sporogenes obtains its energy. Biochem J 28:1746–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara F, Inoue N, Venkateswarathirukumara S (2018) Ingestion of bioactive collagen hydrolysates enhanced pressure ulcer healing in a randomized double-blind placebo-controlled clinical study. Sci Rep 8:11403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ter Schure EG, van Riel NA, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83

    Article  PubMed  Google Scholar 

  • Tomar PC, Lakra N, Mishra SN (2013) Cadaverine: a lysine catabolite involved in plant growth and development. Plant Signal Behav 8:e25850

    Article  CAS  PubMed Central  Google Scholar 

  • Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381

    Article  CAS  PubMed  Google Scholar 

  • Tseng CH, Yang CH, Lin HJ, Wu C, Chen HP (2007) The S subunit of d-ornithine aminomutase from Clostridium sticklandii is responsible for the allosteric regulation in d-alpha-lysine aminomutase. FEMS Microbiol Lett 274:148–153

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Andreesen JR (1995) Purification and characterization of threonine dehydrogenase from Clostridium sticklandii. Arch Microbiol 163:286–290

    Article  CAS  PubMed  Google Scholar 

  • Ward BK, Dufault RJ, Hassell R, Cutulle MA (2018) affinity of hyperammonia-producing bacteria to produce bioammonium/ammonia utilizing five organic nitrogen substrates for potential use as an organic liquid fertilizer. ACS Omega 3:11817–11822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Kawamoto S, Ohtani N, Hara E (2017) Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci 108:563–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Morimoto D, Fukumori F, Watanabe Y (2018) Characterization of cis-4-hydroxy-d-proline dehydrogenase from Sinorhizobium meliloti. Biosci Biotechnol Biochem 82:110–113

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Zhu C, Yu T, Huang W, Huang J, Kong Q, Shi J, Chen Z, Liu Q, Wang S, Jiang Z, Chen Z (2017) Studying the differences of bacterial metabolome and microbiome in the colon between landrace and Meihua piglets. Front Microbiol 8:1812

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin B, Liu HB, Wang YY, Bai J, Liu H, Fu B (2016) Improving volatile fatty acids production by exploiting the residual substrates in post-fermented sludge: protease catalysis of refractory protein. Bioresour Technol 203:124–131

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Cui J, Feng Y, Fa Y, Zhang J, Cui Q (2013) Metabolic adaption of ethanol-tolerant Clostridium thermocellum. PLoS One 8:e70631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong H, Parada LF, Baker SJ (2015) Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol 29:7

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Empowerment and Equity Opportunities for Excellence in Science, Science and Engineering Research Board, Department of Science and Technology (No. SERB/F/8173/2015-16), New Delhi, India for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chellapandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: J. González López.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 874 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangavai, C., Chellapandi, P. A metabolic study to decipher amino acid catabolism-directed biofuel synthesis in Acetoanaerobium sticklandii DSM 519. Amino Acids 51, 1397–1407 (2019). https://doi.org/10.1007/s00726-019-02777-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-019-02777-4

Keywords

Navigation