Skip to main content
Log in

Computational analyses of the effect of novel amino acid clusters of human transglutaminase 2 on its structure and function

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Transglutaminase 2 (TGM2) is a unique protein of a nine member family with several enzymatic and non-enzymatic activities and interacting partners. Its physiological and pathological roles, however, are not fully understood. Comparative genomic and computational analysis reported here have revealed phylogenetic changes of TGM2 resulting in novel amino acid clusters in humans and other primates, which may impact secondary structure and increase protein stability. These clusters are located in intrinsically disordered regions and via short linear motifs influence interactions with TGM2 partners directly, or through post-translation modification (phosphorylation and N-glycosylation sites). Our data shed new light on the structural background and evolution of TGM2 multi-functionality and points to so far unrevealed biological roles of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362

    Article  CAS  PubMed  Google Scholar 

  • Cardoso I, Østerlund EC, Stamnaes J, Iversen R, Andersen JT, Jørgensen TJD, Sollid LM (2016) Dissecting the interaction between transglutaminase 2 and fibronectin. Amino Acids. doi:10.1007/s00726-016-2296-y

    PubMed  Google Scholar 

  • Corti A, Curnis F (2011) Isoaspartate-dependent molecular switches for integrin-ligand recognition. J Cell Sci 124(4):515–522

    Article  CAS  PubMed  Google Scholar 

  • Dinkel H et al (2014) The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Res 42((database issue)):D259–266

    Article  CAS  PubMed  Google Scholar 

  • Dosztányi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434

    Article  PubMed  Google Scholar 

  • Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K (2014) Transglutaminase regulation of cell function. Physiol Rev 94:383–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, The Mouse Genome Database Group (2015) The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. Nucleic Acids Res 43((Database issue)):D726–D736

    Article  PubMed  Google Scholar 

  • Exome Aggregation Consortium, Lek M et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. BioRxiv. doi:10.1101/030338. Cold spring harbour lab press (pre-print version). Accessed 31st May 2016.

  • Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27:534–539

    Article  CAS  PubMed  Google Scholar 

  • Fields PA (2001) Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A Mol Integr Physiol 129(2–3):417–431

    Article  CAS  PubMed  Google Scholar 

  • Fuxreiter M, Tompa P, Simon I (2007) Local structural disorder imparts plasticity on linear motifs. Bioinformatics 23:950–956

    Article  CAS  PubMed  Google Scholar 

  • Fuxreiter M, Petróczy AT, Kraut DA, Matouschek AT, Lim RYH, Xue B, Kurgan L, Uversky VN (2014) Disordered proteinaceous machines. Chem Rev 114(13):6806–6843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320(2):369–387

    Article  CAS  PubMed  Google Scholar 

  • Gupta R and Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 7:310–322

    Google Scholar 

  • Hang J, Zemskov EA, Lorand L, Belkin AM (2005) Identification of a novel recognition sequence for fibronectin within the NH2-terminal beta-sandwich domain of tissue transglutaminase. J Biol Chem 280:23675–23683

    Article  CAS  PubMed  Google Scholar 

  • Iismaa SE, Mearns BM, Lorand L, Graham RM (2009) Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 89(3):991–1023

    Article  CAS  PubMed  Google Scholar 

  • Kanchan K, Fuxreiter M, Fesus L (2015) Physiological, pathological, and structural implications of nonenzymatic protein–protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 72(16):3009–3035

    Article  CAS  PubMed  Google Scholar 

  • Király R, Csosz E, Kurtán T, Antus S, Szigeti K, Simon-Vecsei Z, Korponay-Szabó IR, Keresztessy Z, Fésüs L (2009) Functional significance of five noncanonical Ca2+-binding sites of human transglutaminase 2 characterized by site-directed mutagenesis. FEBS J 276(23):7083–7096

    Article  PubMed  Google Scholar 

  • Kuo TF, Tatsukawa H, Kojima S (2011) New insights into the functions and localization of nuclear transglutaminase 2. FEBS J 278(24):4756–4767

    Article  CAS  PubMed  Google Scholar 

  • Kwok SC, Mant CT, Hodges RS (2002) Importance of secondary structural specificity determinants in protein folding: insertion of a native β-sheet sequence into an α-helical coiled-coil. Protein Sci 11(6):1519–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99(5):2743–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  CAS  PubMed  Google Scholar 

  • Luciani A, Villella VR, Vasaturo A, Giardino I, Raia V, Mantovani MP, Apolito MD, Guido S, Leal T, Quaratino S, Maiuri L (2009) SUMOylation of tissue transglutaminase as link between oxidative stress and inflammation. J Immunol 183(4):2775–2784

    Article  CAS  PubMed  Google Scholar 

  • Pawson T, Scott JD (2005) Protein phosphorylation in signalling––50 years and counting. Trends Biochem Sci 30(6):286–290

    Article  CAS  PubMed  Google Scholar 

  • Reimand J, Wagih O, Bader GD (2013) The mutational landscape of phosphorylation signalling in cancer. Sci Rep 3:2651

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins Struct Funct Gen 42:38–48

    Article  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  CAS  PubMed  Google Scholar 

  • Shrestha R, Tatsukawa H, Shrestha R, Ishibashi N, Matsuura T, Kagechika H, Kose S, Hitomi K, Imamoto N, Kojima S (2015) Molecular mechanism by which acyclic retinoid induces nuclear localization of transglutaminase 2 in human hepatocellular carcinoma cells. Cell Death Dis 6:e2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon-Vecsei Z, Király R, Bagossi P, Tóth B, Dahlbom I, Caja S, Csosz É, Lindfors K, Sblattero D, Nemes É, Mäki M, Fésüs L, Korponay-Szabó IR (2012) A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc Natl Acad Sci USA 109(2):431–436

    Article  CAS  PubMed  Google Scholar 

  • Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68

    Article  CAS  PubMed  Google Scholar 

  • Sulem P et al (2015) Identification of a large set of rare complete human knockouts. Nat Genet 47(5):448–452

    Article  CAS  PubMed  Google Scholar 

  • Tokuriki N, Tawfik DS (2009) Stability effects of mutations and protein evolvability. Curr Opin Struct Biol 19(5):596–604

    Article  CAS  PubMed  Google Scholar 

  • UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43((Database issue)):D204–212

    Article  Google Scholar 

  • Van der Lee R et al (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114(13):6589–6631

    Article  PubMed  PubMed Central  Google Scholar 

  • Závodszky P, Kardos J, Svingor A, Petsko GA (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 95(13):7406–7411

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research University Grant of the University of Debrecen (RH/885/2013), the Hungarian Scientific Research Fund (OTKA NK 105046), the New Hungary Development Plan via the TÁMOP-4.2.2.A-11/1/KONV-2012-0023 “VÉD-ELEM” project co-financed by the European Social Fund, the European Union Framework Programme 7 TRANSPATH ITN 289964 and the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of the TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence Programme’ which provided personal support to R.K. The support of the Hungarian Scientific Research Fund (OTKA NN 106562) and the Momentum programme (LP2012-41) of the Hungarian Academy of Sciences is gratefully acknowledged (M.F.). The authors are grateful to Dr. Máté Demény for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Fésüs.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies involving human participants.

Additional information

Handling Editors: S. Beninati, M. Piacentini, C. M. Bergamini.

M. Fuxreiter and L. Fésüs contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangaraju, K., Király, R., Mótyán, J.A. et al. Computational analyses of the effect of novel amino acid clusters of human transglutaminase 2 on its structure and function. Amino Acids 49, 605–614 (2017). https://doi.org/10.1007/s00726-016-2330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2330-0

Keywords

Navigation