Skip to main content
Log in

Cortistatin inhibits calcification of vascular smooth muscle cells by depressing osteoblastic differentiation and endoplasmic reticulum stress

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Accumulating evidence has indicated that vascular smooth muscular cells (VSMCs) play an important role in the development of vascular calcification (VC). Cortistatin (CST), a novel bio-active peptide, has been shown to exert multiple protective effects on the cardiovascular system. However, the role and possible mechanism of CST in VC remain unclear. Therefore, we used β-glycerophosphoric acid (β-GP) to induce calcification in rat and human VSMCs to determine the effects of CST on osteoblastic differentiation and VSMC mineralization in vitro. Compared with the control, β-GP significantly increased alkaline phosphatase (ALP) activity and calcium content in cultured rat and human VSMCs, as well as multicellular node formation and calcium deposition, as confirmed by von Kossa and Alizarin Red S staining assays. After incubating rat and human VSMCs with β-GP in the presence of different doses of CST (10−8 or 10−7 mol/L), CST clearly reversed the β-GP-induced increases in ALP activity and calcium content and formation of pathological calcified nodes of VSMCs in a dose-independent manner. Moreover, 10−8 and 10−7 mol/L CST inhibited the phenotypic transformation of VSMCs into osteoblastic cells by decreasing the osteocalcin protein levels, increasing the SM-α-actin protein levels, and reducing endoplasmic reticulum stress by decreasing the protein expression of glucose-regulated protein 94 and CCAAT/enhancer-binding protein homologous protein. In conclusion, CST directly inhibited β-GP-induced calcification of VSMCs in vitro, probably by suppressing ERS and phenotypic transformation of VSMCs into osteoblastic cells. These results indicate that CST represents a potential target for the prevention and treatment of VC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander MY, Wilkinson FL, Kirton JP, Rock CF, Collett GD, Jeziorska M, Smyth JV, Heagerty AM, Canfield AE (2005) Identification and characterization of vascular calcification-associated factor, a novel gene upregulated during vascular calcification in vitro and in vivo. Arterioscler Thromb Vasc Biol 25:1851–1857

    Article  CAS  PubMed  Google Scholar 

  • Aoki S, Watanabe Y, Tanabe D, Arai M, Suna H, Miyamoto K, Tsujibo H, Tsujikawa K, Yamamoto H, Kobayashi M (2007) Structure-activity relationship and biological property of cortistatins, anti-angiogenic spongean steroidal alkaloids. Bioorg Med Chem 15:6758–6762

    Article  CAS  PubMed  Google Scholar 

  • Braun H, Schulz S, Becker A, Schroder H, Hollt V (1998) Protective effects of cortistatin (CST-14) against kainate-induced neurotoxicity in rat brain. Brain Res 803:54–60

    Article  CAS  PubMed  Google Scholar 

  • Broglio F, Grottoli S, Arvat E, Ghigo E (2008) Endocrine actions of cortistatin: in vivo studies. Mol Cell Endocrinol 286:123–127

    Article  CAS  PubMed  Google Scholar 

  • Chang JR, Duan XH, Zhang BH, Teng X, Zhou YB, Liu Y, Yu YR, Zhu Y, Tang CS, Qi YF (2013) Intermedin1-53 attenuates vascular smooth muscle cell calcification by inhibiting endoplasmic reticulum stress via cyclic adenosine monophosphate/protein kinase A pathway. Exp Biol Med (Maywood) 238:1136–1146

    Article  Google Scholar 

  • Cirelli C, Faraguna U, Tononi G (2006) Changes in brain gene expression after long-term sleep deprivation. J Neurochem 98:1632–1645

    Article  CAS  PubMed  Google Scholar 

  • Dalm VA, Van Hagen PM, de Krijger RR, Kros JM, Van Koetsveld PM, Van Der Lely AJ, Lamberts SW, Hofland LJ (2004) Distribution pattern of somatostatin and cortistatin mRNA in human central and peripheral tissues. Clin Endocrinol (Oxf) 60:625–629

    Article  Google Scholar 

  • de Lecea L, Criado JR, Prospero-Garcia O, Gautvik KM, Schweitzer P, Danielson PE, Dunlop CL, Siggins GR, Henriksen SJ, Sutcliffe JG (1996) A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 381:242–245

    Article  PubMed  Google Scholar 

  • Demer LL, Tintut Y (2008) Vascular calcification: pathobiology of a multifaceted disease. Circulation 117:2938–2948

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan X, Zhou Y, Teng X, Tang C, Qi Y (2009) Endoplasmic reticulum stress-mediated apoptosis is activated in vascular calcification. Biochem Biophys Res Commun 387:694–699

    Article  CAS  PubMed  Google Scholar 

  • Duan XH, Chang JR, Zhang J, Zhang BH, Li YL, Teng X, Zhu Y, Du J, Tang CS, Qi YF (2013) Activating transcription factor 4 is involved in endoplasmic reticulum stress-mediated apoptosis contributing to vascular calcification. Apoptosis 18:1132–1144

    Article  CAS  PubMed  Google Scholar 

  • Duran-Prado M, Morell M, Delgado-Maroto V, Castano JP, Aneiros-Fernandez J, de Lecea L, Culler MD, Hernandez-Cortes P, O’Valle F, Delgado M (2013) Cortistatin inhibits migration and proliferation of human vascular smooth muscle cells and decreases neointimal formation on carotid artery ligation. Circ Res 112:1444–1455

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Zhao Y, Liu Y, Zhu Y, Chi J, Hu J, Zhang X, Yin X (2012) Adenovirus-mediated tissue factor pathway inhibitor gene transfer induces apoptosis by blocking the phosphorylation of JAK-2/STAT-3 pathway in vascular smooth muscle cells. Cell Signal 24:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Rey E, Chorny A, Robledo G, Delgado M (2006) Cortistatin, a new antiinflammatory peptide with therapeutic effect on lethal endotoxemia. J Exp Med 203:563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Rey E, Chorny A, Del Moral RG, Varela N, Delgado M (2007) Therapeutic effect of cortistatin on experimental arthritis by downregulating inflammatory and Th1 responses. Ann Rheum Dis 66:582–588

    Article  CAS  PubMed  Google Scholar 

  • Hruska KA (2009) Vascular smooth muscle cells in the pathogenesis of vascular calcification. Circ Res 104:710–711

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Kang HA, Park M, Lee HY, Choi HR, Yun CH, Oh JW, Kang HS (2012) Interleukin-24 attenuates beta-glycerophosphate-induced calcification of vascular smooth muscle cells by inhibiting apoptosis, the expression of calcification and osteoblastic markers, and the Wnt/beta-catenin pathway. Biochem Biophys Res Commun 428:50–55

    Article  CAS  PubMed  Google Scholar 

  • Liang QH, Jiang Y, Zhu X, Cui RR, Liu GY, Liu Y, Wu SS, Liao XB, Xie H, Zhou HD, Wu XP, Yuan LQ, Liao EY (2012) Ghrelin attenuates the osteoblastic differentiation of vascular smooth muscle cells through the ERK pathway. PLoS One 7:e33126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberman M, Johnson RC, Handy DE, Loscalzo J, Leopold JA (2011) Bone morphogenetic protein-2 activates NADPH oxidase to increase endoplasmic reticulum stress and human coronary artery smooth muscle cell calcification. Biochem Biophys Res Commun 413:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Shanahan CM (2010) Signalling pathways and vascular calcification. Front Biosci (Landmark Ed) 16:1302–1314

    Article  Google Scholar 

  • Liu Y, Yin XH, Qi YF (2009) Progress in biological effects of cortistatin. Sheng Li Ke Xue Jin Zhan 40:219–224

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhou YB, Zhang GG, Cai Y, Duan XH, Teng X, Song JQ, Shi Y, Tang CS, Yin XH, Qi YF (2010) Cortistatin attenuates vascular calcification in rats. Regul Pept 159:35–43

    Article  CAS  PubMed  Google Scholar 

  • Markovics A, Szoke E, Sandor K, Borzsei R, Bagoly T, Kemeny A, Elekes K, Pinter E, Szolcsanyi J, Helyes Z (2012) Comparison of the anti-inflammatory and anti-nociceptive effects of cortistatin-14 and somatostatin-14 in distinct in vitro and in vivo model systems. J Mol Neurosci 46:40–50

    Article  CAS  PubMed  Google Scholar 

  • Masuda M, Ting TC, Levi M, Saunders SJ, Miyazaki-Anzai S, Miyazaki M (2012) Activating transcription factor 4 regulates stearate-induced vascular calcification. J Lipid Res 53:1543–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda M, Miyazaki-Anzai S, Levi M, Ting TC, Miyazaki M (2013) PERK-eIF2alpha-ATF4-CHOP signaling contributes to TNFalpha-induced vascular calcification. J Am Heart Assoc 2:e000238

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazaki-Anzai S, Masuda M, Demos-Davies KM, Keenan AL, Saunders SJ, Masuda R, Jablonski K, Cavasin MA, Kendrick J, Chonchol M, McKinsey TA, Levi M, Miyazaki M (2014) Endoplasmic reticulum stress effector CCAAT/enhancer-binding protein homologous protein (CHOP) regulates chronic kidney disease-induced vascular calcification. J Am Heart Assoc 3:e000949

    Article  PubMed  PubMed Central  Google Scholar 

  • Muccioli G, Papotti M, Locatelli V, Ghigo E, Deghenghi R (2001) Binding of 125I-labeled ghrelin to membranes from human hypothalamus and pituitary gland. J Endocrinol Invest 24:RC-7–RC-9

    Article  CAS  Google Scholar 

  • Qiao W, Chen L, Zhang M (2014) MicroRNA-205 regulates the calcification and osteoblastic differentiation of vascular smooth muscle cells. Cell Physiol Biochem 33:1945–1953

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JL, Joannides AJ, Skepper JN, McNair R, Schurgers LJ, Proudfoot D, Jahnen-Dechent W, Weissberg PL, Shanahan CM (2004) Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 15:2857–2867

    Article  CAS  PubMed  Google Scholar 

  • Robas N, Mead E, Fidock M (2003) MrgX2 is a high potency cortistatin receptor expressed in dorsal root ganglion. J Biol Chem 278:44400–44404

    Article  CAS  PubMed  Google Scholar 

  • Rogers M, Goettsch C, Aikawa E (2013) Medial and intimal calcification in chronic kidney disease: stressing the contributions. J Am Heart Assoc 2:e000481

    Article  PubMed  PubMed Central  Google Scholar 

  • Sage AP, Tintut Y, Demer LL (2010) Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7:528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shioi A, Nishizawa Y, Jono S, Koyama H, Hosoi M, Morii H (1995) Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 15:2003–2009

    Article  CAS  PubMed  Google Scholar 

  • Spier AD, de Lecea L (2000) Cortistatin: a member of the somatostatin neuropeptide family with distinct physiological functions. Brain Res Brain Res Rev 33:228–241

    Article  CAS  PubMed  Google Scholar 

  • Tallent MK, Fabre V, Qiu C, Calbet M, Lamp T, Baratta MV, Suzuki C, Levy CL, Siggins GR, Henriksen SJ, Criado JR, Roberts A, de Lecea L (2005) Cortistatin overexpression in transgenic mice produces deficits in synaptic plasticity and learning. Mol Cell Neurosci 30:465–475

    Article  CAS  PubMed  Google Scholar 

  • Vliegenthart R, Oudkerk M, Hofman A, Oei HH, van Dijck W, van Rooij FJ, Witteman JC (2005) Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation 112:572–577

    Article  PubMed  Google Scholar 

  • Wallin R, Wajih N, Greenwood GT, Sane DC (2001) Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy. Med Res Rev 21:274–301

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Li M, Chai H, Yang H, Lin PH, Yao Q, Chen C (2005) TNF-alpha decreases expression of somatostatin, somatostatin receptors, and cortistatin in human coronary endothelial cells. J Surg Res 123:294–301

    Article  CAS  PubMed  Google Scholar 

  • Zavaczki E, Jeney V, Agarwal A, Zarjou A, Oros M, Katko M, Varga Z, Balla G, Balla J (2011) Hydrogen sulfide inhibits the calcification and osteoblastic differentiation of vascular smooth muscle cells. Kidney Int 80:731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Liu Y, Zhang JS, Zhang XH, Chen WJ, Yin XH, Qi YF (2015) Cortistatin protects myocardium from endoplasmic reticulum stress induced apoptosis during sepsis. Mol Cell Endocrinol 406:40–48

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 81200235 and 81200143), Research Foundation of Education Bureau of Heilongjiang Province, China (Grant No. 12541338) and Foundation of the First Affiliated Hospital of Harbin Medical University, Harbin, China (Grant No. 2015B005). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Liu or Xinhua Yin.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Handling Editor: T. Langer.

Y. Liu and F. Lin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 19 kb)

Supplementary material 2 (TIFF 211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lin, F., Fu, Y. et al. Cortistatin inhibits calcification of vascular smooth muscle cells by depressing osteoblastic differentiation and endoplasmic reticulum stress. Amino Acids 48, 2671–2681 (2016). https://doi.org/10.1007/s00726-016-2303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2303-3

Keywords

Navigation