Skip to main content
Log in

Cis–trans isomerization of omega dihedrals in proteins

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Peptide bonds in protein structures are mainly found in trans conformation with a torsion angle ω close to 180°. Only a very low proportion is observed in cis conformation with ω angle around 0°. Cistrans isomerization leads to local conformation changes which play an important role in many biological processes. In this paper, we reviewed the recent discoveries and research achievements in this field. First, we presented some interesting cases of biological processes in which cistrans isomerization is directly implicated. It is involved in protein folding and various aspect of protein function like dimerization interfaces, autoinhibition control, channel gating, membrane binding. Then we reviewed conservation studies of cis peptide bonds which emphasized evolution constraints in term of sequence and local conformation. Finally we made an overview of the numerous molecular dynamics studies and prediction methodologies already developed to take into account this structural feature in the research area of protein modeling. Many cis peptide bonds have not been recognized as such due to the limited resolution of the data and to the refinement protocol used. Cistrans proline isomerization reactions represents a vast and promising research area that still needs to be further explored for a better understanding of isomerization mechanism and improvement of cis peptide bond predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen FH, Bellard S, Brice MD, Cartwright BA, Doubleday A, Higgs H, Hummelink T, Hummelink-Peters BG, Kennard O, Motherwell WDS, Rodgers JR, Watson DG (1979) The Cambridge crystallographic data centre: computer-based search, retrieval, analysis and display of information. Acta Crystallographica Section B 35:2331–2339. doi:10.1107/S0567740879009249

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402 (pii: gka562)

    Article  PubMed  CAS  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112(3):535–542

    Article  PubMed  CAS  Google Scholar 

  • Brandl CJ, Deber CM (1986) Hypothesis about the function of membrane-buried proline residues in transport proteins. Proc Natl Acad Sci USA 83(4):917–921

    Article  PubMed  CAS  Google Scholar 

  • Brandts JF, Halvorson HR, Brennan M (1975) Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14(22):4953–4963

    Article  PubMed  CAS  Google Scholar 

  • Chan PM, Ilangumaran S, La Rose J, Chakrabartty A, Rottapel R (2003) Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol 23(9):3067–3078

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Edwards SA, Grater F, Baldauf C (2012) On the cis to trans isomerization of prolyl-peptide bonds under tension. J Phys Chem B 116(31):9346–9351. doi:10.1021/jp3042846

    Article  PubMed  CAS  Google Scholar 

  • Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry 13(2):211–222

    Article  PubMed  CAS  Google Scholar 

  • Darve E, Rodriguez-Gomez D, Pohorille A (2008) Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys 128(14):144120. doi:10.1063/1.2829861

    Article  PubMed  Google Scholar 

  • de Brevern AG, Etchebest C, Hazout S (2000) Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins 41(3):271–287. doi:10.1002/1097-0134(20001115)41:3<271:AID-PROT10>3.0.CO;2-Z

    Article  PubMed  Google Scholar 

  • Eakin CM, Berman AJ, Miranker AD (2006) A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol 13(3):202–208. doi:10.1038/nsmb1068

    Article  PubMed  CAS  Google Scholar 

  • Etchebest C, Benros C, Hazout S, de Brevern AG (2005) A structural alphabet for local protein structures: improved prediction methods. Proteins 59(4):810–827. doi:10.1002/prot.20458

    Article  PubMed  CAS  Google Scholar 

  • Evans TC Jr, Nelsestuen GL (1996) Importance of cis-proline 22 in the membrane-binding conformation of bovine prothrombin. Biochemistry 35(25):8210–8215. doi:10.1021/bi9606354

    Article  PubMed  CAS  Google Scholar 

  • Exarchos KP, Exarchos TP, Papaloukas C, Troganis AN, Fotiadis DI (2009a) PBOND: web server for the prediction of proline and non-proline cis/trans isomerization. Genomics Proteomics Bioinformatics 7(3):138–142. doi:10.1016/S1672-0229(08)60042-X

    Article  PubMed  CAS  Google Scholar 

  • Exarchos KP, Papaloukas C, Exarchos TP, Troganis AN, Fotiadis DI (2009b) Prediction of cis/trans isomerization using feature selection and support vector machines. J Biomed Inform 42(1):140–149. doi:10.1016/j.jbi.2008.05.006

    Article  PubMed  CAS  Google Scholar 

  • Fogolari F, Corazza A, Varini N, Rotter M, Gumral D, Codutti L, Rennella E, Viglino P, Bellotti V, Esposito G (2011) Molecular dynamics simulation of beta(2)-microglobulin in denaturing and stabilizing conditions. Proteins 79(3):986–1001. doi:10.1002/prot.22940

    Article  PubMed  CAS  Google Scholar 

  • Friedland N, Liou HL, Lobel P, Stock AM (2003) Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc Natl Acad Sci USA 100(5):2512–2517. doi:10.1073/pnas.0437840100

    Article  PubMed  CAS  Google Scholar 

  • Frommel C, Preissner R (1990) Prediction of prolyl residues in cis-conformation in protein structures on the basis of the amino acid sequence. FEBS Lett 277(1–2):159–163 (pii: 0014-5793(90)80833-5)

    Article  PubMed  CAS  Google Scholar 

  • Grathwohl C, Wuthrich K (1976) The X-Pro peptide bond as an NMR probe for conformational studies of flexible linear peptides. Biopolymers 15(10):2025–2041. doi:10.1002/bip.1976.360151012

    Article  PubMed  CAS  Google Scholar 

  • Gunasekaran K, Ramakrishnan C, Balaram P (1996) Disallowed Ramachandran conformations of amino acid residues in protein structures. J Mol Biol 264(1):191–198. doi:10.1006/jmbi.1996.0633

    Article  PubMed  CAS  Google Scholar 

  • Hodel A, Rice LM, Simonson T, Fox RO, Brunger AT (1995) Proline cis-trans isomerization in staphylococcal nuclease: multi-substrate free energy perturbation calculations. Protein Sci 4(4):636–654. doi:10.1002/pro.5560040405

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Steigemann W (1974) Two cis-prolines in the Bence-Jones protein Rei and the cis-pro-bend. FEBS Lett 48(2):235–237 (pii:0014-5793(74)80475-8)

    Article  PubMed  CAS  Google Scholar 

  • Ikura T, Tsurupa GP, Kuwajima K (1997) Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations. Biochemistry 36(21):6529–6538. doi:10.1021/bi963174v

    Article  PubMed  CAS  Google Scholar 

  • Jabs A, Weiss MS, Hilgenfeld R (1999) Non-proline cis peptide bonds in proteins. J Mol Biol 286(1):291–304. doi:10.1006/jmbi.1998.2459

    Article  PubMed  CAS  Google Scholar 

  • Jallu V, Dusseaux M, Panzer S, Torchet MF, Hezard N, Goudemand J, de Brevern AG, Kaplan C (2010) AlphaIIbbeta3 integrin: new allelic variants in Glanzmann thrombasthenia, effects on ITGA2B and ITGB3 mRNA splicing, expression, and structure-function. Hum Mutat 31(3):237–246. doi:10.1002/humu.21179

    Article  PubMed  CAS  Google Scholar 

  • Jallu V, Poulain P, Fuchs PF, Kaplan C, de Brevern AG (2012) Modeling and molecular dynamics of HPA-1a and -1b polymorphisms: effects on the structure of the beta3 subunit of the alphaIIbbeta3 integrin. PLoS ONE 7(11):e47304. doi:10.1371/journal.pone.0047304

    Article  PubMed  CAS  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292(2):195–202. doi:10.1006/jmbi.1999.3091

    Article  PubMed  CAS  Google Scholar 

  • Joseph AP, Agarwal G, Mahajan S, Gelly JC, Swapna LS, Offmann B, Cadet F, Bornot A, Tyagi M, Valadie H, Schneider B, Etchebest C, Srinivasan N, De Brevern AG (2010) A short survey on protein blocks. Biophys Rev 2(3):137–147. doi:10.1007/s12551-010-0036-1

    Article  PubMed  CAS  Google Scholar 

  • Joseph AP, Srinivasan N, de Brevern AG (2012) Cis-trans peptide variations in structurally similar proteins. Amino Acids 43(3):1369–1381. doi:10.1007/s00726-011-1211-9

    Article  PubMed  CAS  Google Scholar 

  • Kang YK (2006) Conformational preferences of non-prolyl and prolyl residues. J Phys Chem B 110(42):21338–21348. doi:10.1021/jp0647481

    Article  PubMed  CAS  Google Scholar 

  • Kiefhaber T, Grunert HP, Hahn U, Schmid FX (1990) Replacement of a cis proline simplifies the mechanism of ribonuclease T1 folding. Biochemistry 29(27):6475–6480

    Article  PubMed  CAS  Google Scholar 

  • Levitt M (1981) Effect of proline residues on protein folding. J Mol Biol 145(1):251–263 (pii: 0022-2836(81)90342-9)

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen S, Peters B, Goede A, Preissner R, Frommel C (2005) Conservation of cis prolyl bonds in proteins during evolution. Proteins 58(3):589–595. doi:10.1002/prot.20342

    Article  PubMed  CAS  Google Scholar 

  • Lu KP, Finn G, Lee TH, Nicholson LK (2007) Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 3(10):619–629. doi:10.1038/nchembio.2007.35

    Article  PubMed  CAS  Google Scholar 

  • Lummis SC, Beene DL, Lee LW, Lester HA, Broadhurst RW, Dougherty DA (2005) Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438(7065):248–252. doi:10.1038/nature04130

    Article  PubMed  CAS  Google Scholar 

  • MacArthur MW, Thornton JM (1996) Deviations from planarity of the peptide bond in peptides and proteins. J Mol Biol 264(5):1180–1195. doi:10.1006/jmbi.1996.0705

    Article  PubMed  CAS  Google Scholar 

  • Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405(2):442–451

    Article  PubMed  CAS  Google Scholar 

  • Melis C, Bussi G, Lummis SC, Molteni C (2009) Trans-cis switching mechanisms in proline analogues and their relevance for the gating of the 5-HT3 receptor. J Phys Chem B 113(35):12148–12153. doi:10.1021/jp9046962

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540. doi:10.1006/jmbi.1995.0159

    PubMed  CAS  Google Scholar 

  • Nelson CJ, Santos-Rosa H, Kouzarides T (2006) Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126(5):905–916. doi:10.1016/j.cell.2006.07.026

    Article  PubMed  CAS  Google Scholar 

  • Pahlke D, Freund C, Leitner D, Labudde D (2005a) Statistically significant dependence of the Xaa-Pro peptide bond conformation on secondary structure and amino acid sequence. BMC Struct Biol 5:8. doi:10.1186/1472-6807-5-8

    Article  PubMed  Google Scholar 

  • Pahlke D, Leitner D, Wiedemann U, Labudde D (2005b) COPS–cis/trans peptide bond conformation prediction of amino acids on the basis of secondary structure information. Bioinformatics 21(5):685–686. doi:10.1093/bioinformatics/bti089

    Article  PubMed  CAS  Google Scholar 

  • Pal D, Chakrabarti P (1999) Cis peptide bonds in proteins: residues involved, their conformations, interactions and locations. J Mol Biol 294(1):271–288. doi:10.1006/jmbi.1999.3217

    Article  PubMed  CAS  Google Scholar 

  • Pastorino L, Sun A, Lu PJ, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li SH, Li X, Xia W, Nicholson LK, Lu KP (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440(7083):528–534. doi:10.1038/nature04543

    Article  PubMed  CAS  Google Scholar 

  • Perera L, Darden TA, Pedersen LG (1998) Trans-cis isomerization of proline 22 in bovine prothrombin fragment 1: a surprising result of structural characterization. Biochemistry 37(31):10920–10927. doi:10.1021/bi980263u

    Article  PubMed  CAS  Google Scholar 

  • Raleigh DP, Evans PA, Pitkeathly M, Dobson CM (1992) A peptide model for proline isomerism in the unfolded state of staphylococcal nuclease. J Mol Biol 228(2):338–342 (pii: 0022-2836(92)90822-2)

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran GN, Sasisekharan V (1968) Conformation of polypeptides and proteins. Adv Protein Chem 23:283–438

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Overington JP (1994) Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 3(9):1582–1596. doi:10.1002/pro.5560030923

    Article  PubMed  CAS  Google Scholar 

  • Sansom, Weinstein H (2000) Hinges, swivels and switches: the role of prolines in signalling via transmembrane alpha-helices. Trends Pharmacol Sci 21(11):445–451 (pii: S0165614700015534)

    Article  PubMed  CAS  Google Scholar 

  • Sarkar P, Reichman C, Saleh T, Birge RB, Kalodimos CG (2007) Proline cis-trans isomerization controls autoinhibition of a signaling protein. Mol Cell 25(3):413–426. doi:10.1016/j.molcel.2007.01.004

    Article  PubMed  CAS  Google Scholar 

  • Sarkar P, Saleh T, Tzeng SR, Birge RB, Kalodimos CG (2010) Structural basis for regulation of the Crk signaling protein by a proline switch. Nat Chem Biol 7(1):51–57. doi:10.1038/nchembio.494

    Article  PubMed  Google Scholar 

  • Schmid FX, Baldwin RL (1978) Acid catalysis of the formation of the slow-folding species of RNase A: evidence that the reaction is proline isomerization. Proc Natl Acad Sci USA 75(10):4764–4768

    Article  PubMed  CAS  Google Scholar 

  • Song J, Burrage K, Yuan Z, Huber T (2006) Prediction of cis/trans isomerization in proteins using PSI-BLAST profiles and secondary structure information. BMC Bioinformatics 7:124. doi:10.1186/1471-2105-7-124

    Article  PubMed  Google Scholar 

  • Stewart DE, Sarkar A, Wampler JE (1990) Occurrence and role of cis peptide bonds in protein structures. J Mol Biol 214(1):253–260. doi:10.1016/0022-2836(90)90159-J

    Article  PubMed  CAS  Google Scholar 

  • Suizu F, Ryo A, Wulf G, Lim J, Lu KP (2006) Pin1 regulates centrosome duplication, and its overexpression induces centrosome amplification, chromosome instability, and oncogenesis. Mol Cell Biol 26(4):1463–1479. doi:10.1128/MCB.26.4.1463-1479.2006

    Article  PubMed  CAS  Google Scholar 

  • Truckses DM, Somoza JR, Prehoda KE, Miller SC, Markley JL (1996) Coupling between trans/cis proline isomerization and protein stability in staphylococcal nuclease. Protein Sci 5(9):1907–1916. doi:10.1002/pro.5560050917

    Article  PubMed  CAS  Google Scholar 

  • van Aalten DM, Komander D, Synstad B, Gaseidnes S, Peter MG, Eijsink VG (2001) Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci USA 98(16):8979–8984. doi:10.1073/pnas.151103798

    Article  PubMed  Google Scholar 

  • Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999. doi:10.1109/72.788640

    Article  PubMed  CAS  Google Scholar 

  • Vohringer-Martinez E, Toro-Labbe A (2011) The mean reaction force: a method to study the influence of the environment on reaction mechanisms. J Chem Phys 135(6):064505. doi:10.1063/1.3624388

    Article  PubMed  Google Scholar 

  • Vohringer-Martinez E, Duarte F, Toro-Labbe A (2012) How does Pin1 catalyze the cis-trans prolyl peptide bond isomerization? A QM/MM and mean reaction force study. J Phys Chem B 116(43):12972–12979. doi:10.1021/jp307946h

    Article  PubMed  CAS  Google Scholar 

  • Wang ML, Li WJ, Xu WB (2004) Support vector machines for prediction of peptidyl prolyl cis/trans isomerization. J Pept Res 63(1):23–28 (pii:100)

    Article  PubMed  Google Scholar 

  • Wedemeyer WJ, Welker E, Scheraga HA (2002) Proline cis-trans isomerization and protein folding. Biochemistry 41(50):14637–14644 (pii: bi020574b)

    Article  PubMed  CAS  Google Scholar 

  • Weiss MS, Jabs A, Hilgenfeld R (1998a) Peptide bonds revisited. Nat Struct Biol 5(8):676. doi:10.1038/1368

    Article  PubMed  CAS  Google Scholar 

  • Weiss, Metzner HJ, Hilgenfeld R (1998b) Two non-proline cis peptide bonds may be important for factor XIII function. FEBS Lett 423(3):291–296 (pii:S0014-5793(98)00098-2)

    Article  PubMed  CAS  Google Scholar 

  • Wu WJ, Raleigh DP (1998) Local control of peptide conformation: stabilization of cis proline peptide bonds by aromatic proline interactions. Biopolymers 45(5):381–394. doi:10.1002/(SICI)1097-0282(19980415)45:5<381:AID-BIP6>3.0.CO;2-H

    Article  PubMed  CAS  Google Scholar 

  • Wulf G, Finn G, Suizu F, Lu KP (2005) Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol 7(5):435–441. doi:10.1038/ncb0505-435

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Faraggi E, Zhao H, Zhou Y (2011) Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics 27(15):2076–2082. doi:10.1093/bioinformatics/btr350

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa Y, Nakata K, Sakakura K, Takada T, Nakamura H (2009) Intra- and intermolecular interaction inducing pyramidalization on both sides of a proline dipeptide during isomerization: an ab initio QM/MM molecular dynamics simulation study in explicit water. J Am Chem Soc 131(12):4535–4540. doi:10.1021/ja807814x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Research (France), University Paris Diderot, Sorbonne Paris Cité (France), National Institute for Blood Transfusion (INTS, France), National Institute for Health and Medical Research (INSERM, France) and “Investissements d’avenir”, Laboratories of Excellence GR-Exto APJ, PC, JR and AdB, (France);HFSP to APJ; and ANR NaturaDyRe (France, ANR-2010-CD2I-014-04) to JR.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandre G. de Brevern or Joseph Rebehmed.

Additional information

P. Craveur and A. Praveen Joseph contributed equally.

A. G. de Brevern and J. Rebehmed contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craveur, P., Joseph, A.P., Poulain, P. et al. Cis–trans isomerization of omega dihedrals in proteins. Amino Acids 45, 279–289 (2013). https://doi.org/10.1007/s00726-013-1511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1511-3

Keywords

Navigation