Skip to main content

Advertisement

Log in

Role of the mu-opioid receptor in opioid modulation of immune function

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Endogenous opioids are synthesized in vivo to modulate pain mechanisms and inflammatory pathways. Endogenous and exogenous opioids mediate analgesia in response to painful stimuli by binding to opioid receptors on neuronal cells. However, wide distribution of opioid receptors on tissues and organ systems outside the CNS, such as the cells of the immune system, indicate that opioids are capable of exerting additional effects in the periphery, such as immunomodulation. The increased prevalence of infections in opioid abuser-based epidemiological studies further highlights the immunosuppressive effects of opioids. In spite of their many debilitating side effects, prescription opioids remain a gold standard for treatment of chronic pain. Therefore, given the prevalence of opioid use and abuse, opioid-mediated immune suppression presents a serious concern in our society today. It is imperative to understand the mechanisms by which exogenous opioids modulate immune processes. In this review, we will discuss the role of opioid receptors and their ligands in mediating immune-suppressive functions. We will summarize recent studies on direct and indirect opioid modulation of the cells of the immune system, as well as the role of opioids in exacerbation of certain disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aherne GW, Piall EM, Twycross RG (1979) Serum morphine concentration after oral administration of diamorphine hydrochloride and morphine sulphate. Br J Clin Pharmacol 8:577–580

    CAS  PubMed  Google Scholar 

  • Akil H, Watson SJ, Young E, Lewis ME, Khachaturian H, Walker JM (1984) Endogenous opioids: biology and function. Annu Rev Neurosci 7:223–255

    CAS  PubMed  Google Scholar 

  • Andersen YS, Gillin FD, Eckmann L (2006) Adaptive immunity-dependent intestinal hypermotility contributes to host defense against Giardia spp. Infect Immun 74:2473–2476

    CAS  PubMed  Google Scholar 

  • Antonijevic I, Mousa SA, Schafer M, Stein C (1995) Perineurial defect and peripheral opioid analgesia in inflammation. J Neurosci 15:165–172

    CAS  PubMed  Google Scholar 

  • Asakura H, Kawamoto K, Igimi S, Yamamoto S, Makino S (2006) Enhancement of mice susceptibility to infection with Listeria monocytogenes by the treatment of morphine. Microbiol Immunol 50:543–547

    CAS  PubMed  Google Scholar 

  • Bhargava HN, Thomas PT, Thorat S, House RV (1994) Effects of morphine tolerance and abstinence on cellular immune function. Brain Res 642:1–10

    CAS  PubMed  Google Scholar 

  • Bhaskaran M, Kapasi AA, Reddy K, Singhal PC (2007) Morphine priming rescues high-dose morphine-induced biological perturbations. J Infect Dis 195:1860–1869

    CAS  PubMed  Google Scholar 

  • Bhaskaran M, Reddy K, Sharma S, Singh J, Radhakrishnan N, Kapasi A, Singhal PC (2001) Morphine-induced degradation of the host defense barrier: role of macrophage injury. J Infect Dis 184:1524–1531

    CAS  PubMed  Google Scholar 

  • Bidlack JM, Khimich M, Parkhill AL, Sumagin S, Sun B, Tipton CM (2006) Opioid receptors and signaling on cells from the immune system. J Neuroimmune Pharmacol 1:260–269

    PubMed  Google Scholar 

  • Bloch B, Bugnon C, Fellman D, Lenys D (1978) Immunocytochemical evidence that the same neurons in the human infundibular nucleus are stained with anti-endorphins and antisera of other related peptides. Neurosci Lett 10:147–152

    CAS  PubMed  Google Scholar 

  • Bloom F, Battenberg E, Rossier J, Ling N, Leppaluoto J, Vargo TM, Guillemin R (1977) Endorphins are located in the intermediate and anterior lobes of the pituitary gland, not in the neurohypophysis. Life Sci 20:43–47

    CAS  PubMed  Google Scholar 

  • Borner C, Kraus J, Bedini A, Schraven B, Hollt V (2008) T-cell receptor/CD28-mediated activation of human T lymphocytes induces expression of functional mu-opioid receptors. Mol Pharmacol 74:496–504

    PubMed  Google Scholar 

  • Brack A, Rittner HL, Stein C (2011) Immunosuppressive effects of opioids-clinical relevance. J Neuroimmune Pharmacol 6:490–502

    PubMed  Google Scholar 

  • Bryant HU, Bernton EW, Holaday JW (1988a) Morphine pellet-induced immunomodulation in mice: temporal relationships. J Pharmacol Exp Ther 245:913–920

    CAS  PubMed  Google Scholar 

  • Bryant HU, Yoburn BC, Inturrisi CE, Bernton EW, Holaday JW (1988b) Morphine-induced immunomodulation is not related to serum morphine concentrations. Eur J Pharmacol 149:165–169

    CAS  PubMed  Google Scholar 

  • Bryant HU, Bernton EW, Kenner JR, Holaday JW (1991) Role of adrenal cortical activation in the immunosuppressive effects of chronic morphine treatment. Endocrinology 128:3253–3258

    CAS  PubMed  Google Scholar 

  • Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, Grandy DK (1994) Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett 347:284–288

    CAS  PubMed  Google Scholar 

  • Bussiere JL, Adler MW, Rogers TJ, Eisenstein TK (1993) Cytokine reversal of morphine-induced suppression of the antibody response. J Pharmacol Exp Ther 264:591–597

    CAS  PubMed  Google Scholar 

  • Bussiere JL, Adler MW, Rogers TJ, Eisenstein TK (1992) Differential effects of morphine and naltrexone on the antibody response in various mouse strains. Immunopharmacol Immunotoxicol 14:657–673

    CAS  PubMed  Google Scholar 

  • Cabot PJ, Carter L, Gaiddon C, Zhang Q, Schafer M, Loeffler JP, Stein C (1997) Immune cell-derived beta-endorphin. Production, release, and control of inflammatory pain in rats. J Clin Invest 100:142–148

    CAS  PubMed  Google Scholar 

  • Cabral GA (2006) Drugs of abuse, immune modulation, and AIDS. J Neuroimmune Pharmacol 1:280–295

    PubMed  Google Scholar 

  • Carr DJJ, DeCosta BR, Jacobson AE, Rice KC, Edwin Blalock J (1991) Enantioselective kappa opioid binding sites on the macrophage cell line, P388d1. Life Sci 49:45–51

    CAS  PubMed  Google Scholar 

  • Casellas AM, Guardiola H, Renaud FL (1991) Inhibition by opioids of phagocytosis in peritoneal macrophages. Neuropeptides 18:35–40

    CAS  PubMed  Google Scholar 

  • Chao CC, Gekker G, Hu S, Sheng WS, Shark KB, Bu DF, Archer S, Bidlack JM, Peterson PK (1996) Kappa Opioid Receptors in Human Microglia Downregulate Human Immunodeficiency Virus 1 Expression. Proc Natl Acad Sci USA 93:8051–8056

    CAS  PubMed  Google Scholar 

  • Choi HS, Kim CS, Hwang CK, Song KY, Wang W, Qiu Y, Law PY, Wei LN, Loh HH (2006) The opioid ligand binding of human mu-opioid receptor is modulated by novel splice variants of the receptor. Biochem Biophys Res Commun 343:1132–1140

    CAS  PubMed  Google Scholar 

  • Chuang TK, Killam KF, Chuang LF, Kung HF, Sheng WS, Chao CC, Yu L, Chuang RY (1995) Mu Opioid Receptor Gene Expression in Immune Cells. Biochem Biophys Res Commun 216:922–930

    CAS  PubMed  Google Scholar 

  • Compton WM, Volkow ND (2006) Abuse of prescription drugs and the risk of addiction. Drug Alcohol Depend 83(Suppl 1):S4–S7

    Google Scholar 

  • Dahan A, van Dorp E, Smith T, Yassen A (2008) Morphine-6-glucuronide (M6G) for postoperative pain relief. Eur J Pain 12:403–411

    CAS  PubMed  Google Scholar 

  • Eisenstein TK, Hilburger ME (1998) Opioid modulation of immune responses: effects on phagocyte and lymphoid cell populations. J Neuroimmunol 83:36–44

    CAS  PubMed  Google Scholar 

  • Elde R, Hokfelt T, Johansson O, Terenius L (1976) Immunohistochemical studies using antibodies to leucine-enkephalin: initial observations on the nervous system of the rat. Neuroscience 1:349–351

    CAS  PubMed  Google Scholar 

  • Evans CJ (2004) Secrets of the opium poppy revealed. Neuropharmacology 47(Suppl 1):293–299

    CAS  PubMed  Google Scholar 

  • Falke NE, Fischer EG, Martin R (1985) Stereospecific opiate binding in living human polymorphonuclear leucocytes. Cell Biol Int Rep 9:1041–1047

    CAS  PubMed  Google Scholar 

  • Gaveriaux C, Peluso J, Simonin F, Laforet J, Kieffer B (1995) Identification of kappa- and delta-opioid receptor transcripts in immune cells. FEBS Lett 369:272–276

    CAS  PubMed  Google Scholar 

  • Gaveriaux-Ruff C, Matthes HW, Peluso J, Kieffer BL (1998) Abolition of morphine-immunosuppression in mice lacking the mu-opioid receptor gene. Proc Natl Acad Sci USA 95:6326–6330

    CAS  PubMed  Google Scholar 

  • Glaum SR, Miller RJ, Hammond DL (1994) Inhibitory actions of delta 1-, delta 2-, and mu-opioid receptor agonists on excitatory transmission in lamina II neurons of adult rat spinal cord. J Neurosci 14:4965–4971

    CAS  PubMed  Google Scholar 

  • Goodsell DS (2005) The molecular perspective: morphine. Stem Cells 23:144–145

    PubMed  Google Scholar 

  • Grimm MC, Ben-Baruch A, Taub DD, Howard OM, Resau JH, Wang JM, Ali H, Richardson R, Snyderman R, Oppenheim JJ (1998a) Opiates transdeactivate chemokine receptors: delta and mu opiate receptor-mediated heterologous desensitization. J Exp Med 188:317–325

    CAS  PubMed  Google Scholar 

  • Grimm MC, Ben-Baruch A, Taub DD, Howard OM, Wang JM, Oppenheim JJ (1998b) Opiate inhibition of chemokine-induced chemotaxis. Ann N Y Acad Sci 840:9–20

    CAS  PubMed  Google Scholar 

  • Gylbert L (1973). The crystal and molecular structure of morphine hydrochloride trihydrate. Acta Crystallographica Section B 29(8):1630–1635

    Google Scholar 

  • Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, Kempner E, Glossmann H (1996) Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci USA 93:8072–8077

    CAS  PubMed  Google Scholar 

  • Haverkos HW, Lange WR (1990) From the alcohol, drug abuse, and mental health administration. Serious infections other than human immunodeficiency virus among intravenous drug abusers. J Infect Dis 161:894–902

    Google Scholar 

  • Hilburger ME, Adler MW, Truant AL, Meissler JJ Jr, Satishchandran V, Rogers TJ, Eisenstein TK (1997) Morphine induces sepsis in mice. J Infect Dis 176:183–188

    CAS  PubMed  Google Scholar 

  • Hokfelt T, Elde R, Johansson O, Terenius L, Stein L (1977) The distribution of enkephalin-immunoreactive cell bodies in the rat central nervous system. Neurosci Lett 5:25–31

    CAS  PubMed  Google Scholar 

  • Horsburgh CR Jr, Anderson JR, Boyko EJ (1989) Increased incidence of infections in intravenous drug users. Infect Control Hosp Epidemiol 10:211–215

    PubMed  Google Scholar 

  • HUSSEY HH, KATZ S (1950) Infections resulting from narcotic addiction; report of 102 cases. Am J Med 9:186–193

    CAS  PubMed  Google Scholar 

  • Ignatowski TA, Bidlack JM (1998) Detection of kappa opioid receptors on mouse thymocyte phenotypic subpopulations as assessed by flow cytometry. J Pharmacol Exp Ther 284:298–306

    CAS  PubMed  Google Scholar 

  • Inturrisi CE (2002) Clinical pharmacology of opioids for pain. Clin J Pain 18:S3–S13

    PubMed  Google Scholar 

  • Jacobowitz DM, O’Donohue TL (1978) alpha-Melanocyte stimulating hormone: immunohistochemical identification and mapping in neurons of rat brain. Proc Natl Acad Sci USA 75:6300–6304

    CAS  PubMed  Google Scholar 

  • Ji RR, Zhang Q, Law PY, Low HH, Elde R, Hokfelt T (1995) Expression of mu-, delta-, and kappa-opioid receptor-like immunoreactivities in rat dorsal root ganglia after carrageenan-induced inflammation. J Neurosci 15:8156–8166

    CAS  PubMed  Google Scholar 

  • Joe GW, Knezek L, Watson D, Simpson DD (1991) Depression and decision-making among intravenous drug users. Psychol Rep 68:339–347

    CAS  PubMed  Google Scholar 

  • Khachaturian H, Lewis ME, Watson SJ (1982a) Immunocytochemical studies with antisera against leu-enkephalin and an enkephalin-precursor fragment (BAM-22P) in the rat brain. Life Sci 31:1879–1882

    CAS  PubMed  Google Scholar 

  • Khachaturian H, Watson SJ, Lewis ME, Coy D, Goldstein A, Akil H (1982b) Dynorphin immunocytochemistry in the rat central nervous system. Peptides 3:941–954

    CAS  PubMed  Google Scholar 

  • Kirst A, Wack C, Lutz WK, Eggert A, Kämpgen E, Fischer WH (2002) Expression of functional κ-opioid receptors on murine dendritic cells. Immunol Lett 84:41–48

    CAS  PubMed  Google Scholar 

  • Kohno T, Kumamoto E, Higashi H, Shimoji K, Yoshimura M (1999) Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J Physiol 518(Pt 3):803–813

    CAS  PubMed  Google Scholar 

  • Krieger DT, Liotta A, Brownstein MJ (1977) Presence of corticotropin in limbic system of normal and hypophysectomized rats. Brain Res 128:575–579

    CAS  PubMed  Google Scholar 

  • Kulkarni-Narla A, Walcheck B, Brown DR (2001) Opioid receptors on bone marrow neutrophils modulate chemotaxis and CD11b/CD18 expression. Eur J Pharmacol 414:289–294

    CAS  PubMed  Google Scholar 

  • Lefkowitz DL, Stuart R, Gnade BT, Roberts E, Lefkowitz SS (2000) Effects of a glyconutrient on macrophage functions. Int J Immunopharmacol 22:299–308

    CAS  PubMed  Google Scholar 

  • Liu H, Li H, Guo L, Li M, Li C, Wang S, Jiang W, Liu X, McNutt MA, Li G (2010) Mechanisms involved in phosphatidylinositol 3-kinase pathway mediated up-regulation of the mu opioid receptor in lymphocytes. Biochem Pharmacol 79:516–523

    CAS  PubMed  Google Scholar 

  • Lopker A, Abood LG, Hoss W, Lionetti FJ (1980) Stereoselective muscarinic acetylcholine and opiate receptors in human phagocytic leukocytes. Biochem Pharmacol 29:1361–1365

    CAS  PubMed  Google Scholar 

  • Lord JA, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    CAS  PubMed  Google Scholar 

  • Louria DB, Hensle T, Rose J (1967) The major medical complications of heroin addiction. Ann Intern Med 67:1–22

    CAS  PubMed  Google Scholar 

  • Lugo-Chinchilla AM, Baez D, Velez M, Ildefonso C, Renaud FL (2006) Altered subcellular signaling in murine peritoneal macrophages upon chronic morphine exposure. J Neuroimmunol 176:86–94

    CAS  PubMed  Google Scholar 

  • Lustman F, Walters EG, Shroff NE, Akbar FA (1987) Diphenoxylate hydrochloride (Lomotil) in the treatment of acute diarrhoea. Br J Clin Pract 41:648–651

    CAS  PubMed  Google Scholar 

  • Machelska H, Cabot PJ, Mousa SA, Zhang Q, Stein C (1998) Pain control in inflammation governed by selectins. Nat Med 4:1425–1428

    CAS  PubMed  Google Scholar 

  • Machelska H, Mousa SA, Brack A, Schopohl JK, Rittner HL, Schafer M, Stein C (2002) Opioid control of inflammatory pain regulated by intercellular adhesion molecule-1. J Neurosci 22:5588–5596

    CAS  PubMed  Google Scholar 

  • Machelska H (2007) Targeting of opioid-producing leukocytes for pain control. Neuropeptides 41:355–363

    CAS  PubMed  Google Scholar 

  • Makarenkova VP, Esche C, Kost NV, Shurin GV, Rabin BS, Zozulya AA, Shurin MR (2001) Identification of delta- and mu-type opioid receptors on human and murine dendritic cells. J Neuroimmunol 117:68–77

    CAS  PubMed  Google Scholar 

  • Martin JL, Koodie L, Krishnan AG, Charboneau R, Barke RA, Roy S (2010) Chronic morphine administration delays wound healing by inhibiting immune cell recruitment to the wound site. Am J Pathol 176:786–799

    CAS  PubMed  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    CAS  PubMed  Google Scholar 

  • McCoy CB, Metsch LR, Collado-Mesa F, Arheart KL, Messiah SE, Katz D, Shapshak P (2004) The prevalence of human immunodeficiency virus type 1 and hepatitis C virus among injection drug users who use high risk inner-city locales in Miami, Florida. Mem Inst Oswaldo Cruz 99:789–793

    PubMed  Google Scholar 

  • Menzebach A, Hirsch J, Nost R, Mogk M, Hempelmann G, Welters ID (2004) Morphine inhibits complement receptor expression, phagocytosis and oxidative burst by a nitric oxide dependent mechanism. Anasthesiol Intensivmed Notfallmed Schmerzther 39:204–211

    CAS  PubMed  Google Scholar 

  • Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535

    CAS  PubMed  Google Scholar 

  • Mizoguchi H, Watanabe C, Higashiya T, Takeda S, Moriyama K, Yonezawa A, Sato T, Komatsu T, Sakurada T, Sakurada S (2011) Involvement of mouse mu-opioid receptor splice variants in the spinal antinociception induced by the dermorphin tetrapeptide analog amidino-TAPA. Eur J Pharmacol 651:66–72

    CAS  PubMed  Google Scholar 

  • Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, Caput D, Vassart G, Meunier JC (1994) ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett 341:33–38

    CAS  PubMed  Google Scholar 

  • Monassier L, Bousquet P (2002) Sigma receptors: from discovery to highlights of their implications in the cardiovascular system. Fundam Clin Pharmacol 16:1–8

    CAS  PubMed  Google Scholar 

  • Moon HD, Li CH, Jennings BM (1973) Immunohistochemical and histochemical studies of pituitary beta-lipotrophs. Anat Rec 175:529–537

    CAS  PubMed  Google Scholar 

  • Mousa SA, Shakibaei M, Sitte N, Schafer M, Stein C (2004) Subcellular pathways of beta-endorphin synthesis, processing, and release from immunocytes in inflammatory pain. Endocrinology 145:1331–1341

    CAS  PubMed  Google Scholar 

  • Mousa SA, Zhang Q, Sitte N, Ji R, Stein C (2001) β-Endorphin-containing memory-cells and μ-opioid receptors undergo transport to peripheral inflamed tissue. J Neuroimmunol 115:71–78

    CAS  PubMed  Google Scholar 

  • Nemoto T, Brown LS Jr, Foster K, Chu A (1990) Behavioral risk factors of human immunodeficiency virus infection among intravenous drug users and implications for preventive interventions. AIDS Educ Prev 2:116–126

    CAS  PubMed  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    CAS  PubMed  Google Scholar 

  • Pacifici R, di Carlo S, Bacosi A, Pichini S, Zuccaro P (2000) Pharmacokinetics and cytokine production in heroin and morphine-treated mice. Int J Immunopharmacol 22:603–614

    CAS  PubMed  Google Scholar 

  • Pan L, Xu J, Yu R, Xu MM, Pan YX, Pasternak GW (2005) Identification and characterization of six new alternatively spliced variants of the human mu opioid receptor gene. Oprm. Neuroscience 133:209–220

    CAS  Google Scholar 

  • Pan YX (2005) Diversity and complexity of the mu opioid receptor gene: alternative pre-mRNA splicing and promoters. DNA Cell Biol 24:736–750

    CAS  PubMed  Google Scholar 

  • Pelletier G (1980) Ultrastructural localization of a fragment (16 K) of the common precursor for adrenocorticotropin (ACTH) and beta-lipotropin (beta-LPH) in the rat hypothalamus. Neurosci Lett 16:85–90

    CAS  PubMed  Google Scholar 

  • Pelletier G, Leclerc R, Labrie F, Cote J, Chretien M, Lis M (1977) Immunohistochemical localization of beta-lipotropic hormone in the pituitary gland. Endocrinology 100:770–776

    CAS  PubMed  Google Scholar 

  • Perez-Castrillon JL, Perez-Arellano JL, Garcia-Palomo JD, Jimenez-Lopez A, De Castro S (1992) Opioids depress in vitro human monocyte chemotaxis. Immunopharmacology 23:57–61

    CAS  PubMed  Google Scholar 

  • Peterson PK, Gekker G, Brummitt C, Pentel P, Bullock M, Simpson M, Hitt J, Sharp B (1989) Suppression of human peripheral blood mononuclear cell function by methadone and morphine. J Infect Dis 159:480–487

    CAS  PubMed  Google Scholar 

  • Peterson PK, Molitor TW, Chao CC (1993) Mechanisms of morphine-induced immunomodulation. Biochem Pharmacol 46:343–348

    CAS  PubMed  Google Scholar 

  • Peterson PK, Sharp B, Gekker G, Brummitt C, Keane WF (1987) Opioid-mediated suppression of cultured peripheral blood mononuclear cell respiratory burst activity. J Immunol 138:3907–3912

    CAS  PubMed  Google Scholar 

  • Przewlocki R, Hassan AH, Lason W, Epplen C, Herz A, Stein C (1992) Gene expression and localization of opioid peptides in immune cells of inflamed tissue: functional role in antinociception. Neuroscience 48:491–500

    CAS  PubMed  Google Scholar 

  • Reichman LB, Felton CP, Edsall JR (1979) Drug dependence, a possible new risk factor for tuberculosis disease. Arch Intern Med 139:337–339

    CAS  PubMed  Google Scholar 

  • Rittner HL, Brack A, Machelska H, Mousa SA, Bauer M, Schafer M, Stein C (2001) Opioid peptide-expressing leukocytes: identification, recruitment, and simultaneously increasing inhibition of inflammatory pain. Anesthesiology 95:500–508

    CAS  PubMed  Google Scholar 

  • Rittner HL, Machelska H, Stein C (2005) Leukocytes in the regulation of pain and analgesia. J Leukoc Biol 78:1215–1222

    CAS  PubMed  Google Scholar 

  • Rittner HL, Roewer N, Brack A (2010) The clinical (ir)relevance of opioid-induced immune suppression. Curr Opin Anaesthesiol 23:588–592

    PubMed  Google Scholar 

  • Rojavin M, Szabo I, Bussiere JL, Rogers TJ, Adler MW, Eisenstein TK (1993) Morphine treatment in vitro or in vivo decreases phagocytic functions of murine macrophages. Life Sci 53:997–1006

    CAS  PubMed  Google Scholar 

  • Roy S, Balasubramanian S, Sumandeep S, Charboneau R, Wang J, Melnyk D, Beilman GJ, Vatassery R, Barke RA (2001) Morphine directs T cells toward T(H2) differentiation. Surgery 130:304–309

    CAS  PubMed  Google Scholar 

  • Roy S, Barke RA, Loh HH (1998a) MU-opioid receptor-knockout mice: role of mu-opioid receptor in morphine mediated immune functions. Brain Res Mol Brain Res 61:190–194

    CAS  PubMed  Google Scholar 

  • Roy S, Cain KJ, Charboneau RG, Barke RA (1998b) Morphine accelerates the progression of sepsis in an experimental sepsis model. Adv Exp Med Biol 437:21–31

    CAS  PubMed  Google Scholar 

  • Roy S, Chapin RB, Cain KJ, Charboneau RG, Ramakrishnan S, Barke RA (1997) Morphine inhibits transcriptional activation of IL-2 in mouse thymocytes. Cell Immunol 179:1–9

    CAS  PubMed  Google Scholar 

  • Roy S, Wang J, Kelschenbach J, Koodie L, Martin J (2006) Modulation of Immune Function by Morphine: Implications for Susceptibility to Infection. JNIP 1:77–89

    PubMed  Google Scholar 

  • Schafer M, Mousa SA, Zhang Q, Carter L, Stein C (1996) Expression of corticotropin-releasing factor in inflamed tissue is required for intrinsic peripheral opioid analgesia. Proc Natl Acad Sci USA 93:6096–6100

    CAS  PubMed  Google Scholar 

  • Schmitt TK, Mousa SA, Brack A, Schmidt DK, Rittner HL, Welte M, Schafer M, Stein C (2003) Modulation of peripheral endogenous opioid analgesia by central afferent blockade. Anesthesiology 98:195–202

    CAS  PubMed  Google Scholar 

  • Sedqi M, Roy S, Ramakrishnan S, Elde R, Loh HH (1995) Complementary DNA cloning of a mu-opioid receptor from rat peritoneal macrophages. Biochem Biophys Res Commun 209:563–574

    CAS  PubMed  Google Scholar 

  • Sedqi M, Roy S, Ramakrishnan S, Loh HH (1996) Expression cloning of a full-length cDNA encoding delta opioid receptor from mouse thymocytes. J Neuroimmunol 65:167–170

    CAS  PubMed  Google Scholar 

  • Sharp BM, Keane WF, Suh HJ, Gekker G, Tsukayama D, Peterson PK (1985) Opioid peptides rapidly stimulate superoxide production by human polymorphonuclear leukocytes and macrophages. Endocrinology 117:793–795

    CAS  PubMed  Google Scholar 

  • Sharp BM, Roy S, Bidlack JM (1998) Evidence for opioid receptors on cells involved in host defense and the immune system. J Neuroimmunol 83:45–56

    CAS  PubMed  Google Scholar 

  • Simpkins CO, Alailima ST, Tate EA, Johnson M (1986) The effect of enkephalins and prostaglandins on O-2 release by neutrophils. J Surg Res 41:645–652

    CAS  PubMed  Google Scholar 

  • Simpkins CO, Dickey CA, Fink MP (1984) Human neutrophil migration is enhanced by beta-endorphin. Life Sci 34:2251–2255

    CAS  PubMed  Google Scholar 

  • Singh PP, Singal P (2007) Morphine-induced neuroimmunomodulation in murine visceral leishmaniasis: the role(s) of cytokines and nitric oxide. J Neuroimmune Pharmacol 2:338–351

    PubMed  Google Scholar 

  • Spittal PM, Bruneau J, Craib KJ, Miller C, Lamothe F, Weber AE, Li K, Tyndall MW, O’Shaughnessy MV, Schechter MT (2003) Surviving the sex trade: a comparison of HIV risk behaviours among street-involved women in two Canadian cities who inject drugs. AIDS Care 15:187–195

    CAS  PubMed  Google Scholar 

  • Stefano GB, Digenis A, Spector S, Leung MK, Bilfinger TV, Makman MH, Scharrer B, Abumrad NN (1993) Opiate-like substances in an invertebrate, an opiate receptor on invertebrate and human immunocytes, and a role in immunosuppression. Proc Natl Acad Sci USA 90:11099–11103

    CAS  PubMed  Google Scholar 

  • Stein C (1995) The control of pain in peripheral tissue by opioids. N Engl J Med 332:1685–1690

    CAS  PubMed  Google Scholar 

  • Stiene-Martin A, Knapp PE, Martin K, Gurwell JA, Ryan S, Thornton SR, Smith FL, Hauser KF (2001) Opioid system diversity in developing neurons, astroglia, and oligodendroglia in the subventricular zone and striatum: impact on gliogenesis in vivo. Glia 36:78–88

    CAS  PubMed  Google Scholar 

  • Suzuki S, Chuang LF, Yau P, Doi RH, Chuang RY (2002) Interactions of opioid and chemokine receptors: oligomerization of mu, kappa, and delta with CCR5 on immune cells. Exp Cell Res 280:192–200

    CAS  PubMed  Google Scholar 

  • Suzuki S, Chuang LF, Doi RH, Bidlack JM, Chuang RY (2001) Kappa-opioid receptors on lymphocytes of a human lymphocytic cell line: morphine-induced up-regulation as evidenced by competitive RT-PCR and indirect immunofluorescence. Int Immunopharmacol 1:1733–1742

    CAS  PubMed  Google Scholar 

  • Szabo I, Rojavin M, Bussiere JL, Eisenstein TK, Adler MW, Rogers TJ (1993) Suppression of peritoneal macrophage phagocytosis of Candida albicans by opioids. J Pharmacol Exp Ther 267:703–706

    CAS  PubMed  Google Scholar 

  • Tomassini N, Renaud F, Roy S, Loh HH (2004) Morphine inhibits Fc-mediated phagocytosis through mu and delta opioid receptors. J Neuroimmunol 147:131–133

    CAS  PubMed  Google Scholar 

  • Tomei EZ, Renaud FL (1997) Effect of morphine on Fc-mediated phagocytosis by murine macrophages in vitro. J Neuroimmunol 74:111–116

    CAS  PubMed  Google Scholar 

  • Tubaro E, Borelli G, Croce C, Cavallo G, Santiangeli C (1983) Effect of morphine on resistance to infection. J Infect Dis 148:656–666

    CAS  PubMed  Google Scholar 

  • Uhl GR, Kuhar MJ, Synder SH (1978) Enkephalin-containing pathway: amygdaloid efferents in the stria terminalis. Brain Res 149:223–228

    CAS  PubMed  Google Scholar 

  • Vallejo R, de Leon-Casasola O, Benyamin R (2004) Opioid therapy and immunosuppression: a review. Am J Ther 11:354–365

    PubMed  Google Scholar 

  • van Rijn RM, Whistler JL, Waldhoer M (2010) Opioid-receptor-heteromer-specific trafficking and pharmacology. Curr Opin Pharmacol 10:73–79

    PubMed  Google Scholar 

  • Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990

    CAS  PubMed  Google Scholar 

  • Wang J, Barke RA, Charboneau R, Loh HH, Roy S (2003) Morphine negatively regulates interferon-gamma promoter activity in activated murine T cells through two distinct cyclic AMP-dependent pathways. J Biol Chem 278:37622–37631

    CAS  PubMed  Google Scholar 

  • Wang J, Barke RA, Charboneau R, Roy S (2005) Morphine impairs host innate immune response and increases susceptibility to Streptococcus pneumoniae lung infection. J Immunol 174:426–434

    CAS  PubMed  Google Scholar 

  • Wang J, Barke RA, Ma J, Charboneau R, Roy S (2008) Opiate abuse, innate immunity, and bacterial infectious diseases. Arch Immunol Ther Exp (Warsz) 56:299–309

    CAS  Google Scholar 

  • Wang J, Charboneau R, Balasubramanian S, Barke RA, Loh HH, Roy S (2001) Morphine modulates lymph node-derived T lymphocyte function: role of caspase-3, -8, and nitric oxide. J Leukoc Biol 70:527–536

    CAS  PubMed  Google Scholar 

  • Watson SJ, Akil H, Ghazarossian VE, Goldstein A (1981) Dynorphin immunocytochemical localization in brain and peripheral nervous system: preliminary studies. Proc Natl Acad Sci USA 78:1260–1263

    CAS  PubMed  Google Scholar 

  • Weber E, Roth KA, Barchas JD (1982) Immunohistochemical distribution of alpha-neo-endorphin/dynorphin neuronal systems in rat brain: evidence for colocalization. Proc Natl Acad Sci USA 79:3062–3066

    CAS  PubMed  Google Scholar 

  • Weber E, Evans CJ, Barchas JD (1983) Multiple endogenous ligands for opioid receptors. Trends Neurosci 6:333–336

    CAS  Google Scholar 

  • Weber RJ, Ikejiri B, Rice KC, Pert A, Hagan AA (1987) Opiate receptor mediated regulation of the immune response in vivo. NIDA Res Monogr 76:341–348

    CAS  PubMed  Google Scholar 

  • Wee, B., Browning, J., Adams, A., Benson, D., Howard, P., Klepping, G., Molassiotis, A., Taylor, D., 2011. Management of chronic cough in patients receiving palliative care: review of evidence and recommendations by a task group of the Association for Palliative Medicine of Great Britain and Ireland. Palliat Med 1–8

  • Welters ID, Menzebach A, Goumon Y, Langefeld TW, Teschemacher H, Hempelmann G, Stefano GB (2000) Morphine suppresses complement receptor expression, phagocytosis, and respiratory burst in neutrophils by a nitric oxide and mu(3) opiate receptor-dependent mechanism. J Neuroimmunol 111:139–145

    CAS  PubMed  Google Scholar 

  • Wick MJ, Minnerath SR, Roy S, Ramakrishnan S, Loh HH (1996) Differential expression of opioid receptor genes in human lymphoid cell lines and peripheral blood lymphocytes. J Neuroimmunol 64:29–36

    CAS  PubMed  Google Scholar 

  • Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769

    CAS  PubMed  Google Scholar 

  • Woolf CJ, Ma Q (2007) Nociceptors—Noxious Stimulus Detectors. Neuron 55:353–364

    CAS  PubMed  Google Scholar 

  • Wuster M, Schulz R, Herz A (1979) Specificity of opioids towards the mu-, delta- and epsilon-opiate receptors. Neurosci Lett 15:193–198

    CAS  PubMed  Google Scholar 

  • Xu J, Xu M, Rossi GC, Pasternak GW, Pan YX (2011) Identification and characterization of seven new exon 11-associated splice variants of the rat mu opioid receptor gene, OPRM1. Mol Pain 7:9

    CAS  PubMed  Google Scholar 

  • Yoshimura M, North RA (1983) Substantia gelatinosa neurones hyperpolarized in vitro by enkephalin. Nature 305:529–530

    CAS  PubMed  Google Scholar 

  • Zagon IS, Gibo DM, McLaughlin PJ (1991) Zeta (zeta), a growth-related opioid receptor in developing rat cerebellum: identification and characterization. Brain Res 551:28–35

    CAS  PubMed  Google Scholar 

  • Zagon IS, Verderame MF, Allen SS, McLaughlin PJ (2000) Cloning, sequencing, chromosomal location, and function of cDNAs encoding an opioid growth factor receptor (OGFr) in humans. Brain Res 856:75–83

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants NIH NIDA/5F31-DA026264, T32 DA07097 (J.N.) and RO1 DA12104, RO1 DA022935, KO2 DA015349, P50 DA11806 (S.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabita Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ninković, J., Roy, S. Role of the mu-opioid receptor in opioid modulation of immune function. Amino Acids 45, 9–24 (2013). https://doi.org/10.1007/s00726-011-1163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1163-0

Keywords

Navigation