Skip to main content

Advertisement

Log in

Facile synthesis of hybrid sulfonophosphinodipeptides composing of taurines and 1-aminoalkylphosphinic acids

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Both sulfonopeptides and phosphonopeptides are important analogs of naturally occurring peptides and have been widely used as enzyme inhibitors and haptens for producing catalytic antibodies due to their tetrahedrally structural features. A series of hybrid sulfonophosphinodipeptides composing of taurines and 1-aminoalkylphosphinic acids were first and conveniently synthesized in satisfactory to good yields via a Mannich-type reaction of N-benzyloxycarbonylaminoalkanesulfonamides, aldehydes, and aryldichlorophosphines, and subsequent hydrolysis. The current method provides an efficient and direct synthesis of hybrid sulfonophosphinodipeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Atherton FR, Hassall CH, Lambert RW (1986) Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid. J Med Chem 29:29–40

    Article  PubMed  CAS  Google Scholar 

  • Buchner B, Lockhart H (1951) An improved method of synthesis of aromatic dichlorophosphines. J Am Chem Soc 73:755

    Article  Google Scholar 

  • Campbell DA, Bermak JC (1994a) Phosphonate ester synthesis using a modified Mitsunobu condensation. J Org Chem 59:658–660

    Article  CAS  Google Scholar 

  • Campbell DA, Bermak JC (1994b) Solid-phase synthesis of peptidylphosphonates. J Am Chem Soc 116:6039–6340

    Article  CAS  Google Scholar 

  • Cunningham E, Drag M, Kafarski P, Bell A (2008) Chemical target validation studies of aminopeptidase in malaria parasites using alpha-aminoalkylphosphonate and phosphonopeptide inhibitors. Antimicrob Agent Chemotherapy 52:3221–3228

    Article  CAS  Google Scholar 

  • Carson KG, Schwender CF, Shroff HN, Cochran NA, Gallant DL, Briskin MJ (1997) Sulfonopeptide inhibitors of leukocyte adhesion. Bioorg Med Chem Lett 7:711–714

    Article  CAS  Google Scholar 

  • Chen RY, Dai Q (1995) Study on the Mannich-type reaction of p-toluenesulfonamide. Chin Chem Lett 6:181–184

    CAS  Google Scholar 

  • Fu NY, Zhang QH, Duan LF, Xu JX (2006) Facile synthesis of phosphonamidate and phosphonate-linked phosphonopeptides. J Pept Sci 12:303–309

    Article  PubMed  CAS  Google Scholar 

  • Galeotti N, Coste J, Bedos P, Jouin P (1996) A straightforward synthesis of α-amino phosphate monoesters using BroP or TPyClU. Tetrahedron Lett 37:3997–3998

    Article  CAS  Google Scholar 

  • Gennari C, Salom B, Potenza D, Williams A (1994) Synthesis of sulfonamide-pseudopeptides-new chiral unnatural ologomers. Angew Chem Int Ed Engl 33:2067–2069

    Article  Google Scholar 

  • He FD, Meng FH, Song XQ, Hu WX, Xu JX (2009) First and convergent synthesis of hybrid sulfonophosphinopeptides. Org Lett 11:3922–3925

    Article  PubMed  CAS  Google Scholar 

  • Kafarski P, Lejczak B (1988) A facile conversion of aminoalkanephosphonic acids into their diethyl esters. The use of unblocked aminoalkanephosphonic acids in phosphono peptide synthesis. Synthesis 307–310

  • Kafarski P, Lejczak B (2000a) Synthesis of phosphono- and phosphinopeptides. In: Kukhar VP, Hudson HR (eds) Aminophosphonic and aminophosphinic acids: chemistry and biological activity. John Wiley, Chichester, Chap. 10, pp 173–204

  • Kafarski P, Lejczak B (2000b) The biological activity of phosphono- and phosphinopeptides. In: Kukhar VP, Hudson HR (eds) Aminophosphonic and aminophosphinic acids: chemistry and biological activity. John Wiley, Chichester, Chap. 12, pp 407–442

  • Karanewsky DS, Badia MC (1986) Synthesis of phosphonic monoesters from phosphonous acids. Tetrahedron Lett 27:1751–1754

    Article  CAS  Google Scholar 

  • Kukhar VP, Soloshonok VA, Solodenko VA (1994) Asymmetric synthesis of phosphorus analogs of amino acids. Phosphorus Sulfur Silicon Relat Elem 92:239–264

    Article  CAS  Google Scholar 

  • Kukhar VP, Sorochinsky AE, Soloshonok VA (2009) Practical synthesis of fluorine-containing alfa- and beta-amino acids: recipes from Kiev, Ukraine. Future Med Chem 1:793–819

    Article  PubMed  CAS  Google Scholar 

  • Li BN, Cai SZ, Du DM, Xu JX (2007) Synthesis of phosphinopeptides via the Mannich ligation. Org Lett 9:2257–2260

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Cai SZ, Xu JX (2006) Asymmetric synthesis of N-protected chiral 1-aminoalkylphosphonic acids and synthesis of side-chain functionalized depsiphosphonopeptides. J Pept Sci 12:337–340

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Xu JX (2005) Synthesis of 1-(N-ethoxycarbonylamino)alkylphosphonic monoesters. Amino Acids 29:241–243

    Article  PubMed  CAS  Google Scholar 

  • Lowik DWPM, Liskamp RWJ (2000) Synthesis of α- and β-substituted aminoethane sulfonamide arginine-glycine mimics. Eur J Org Chem 1219–1228

  • Lukas M, Vojtisek P, Hermann P, Rohovec J, Lukes I (2002) Synthesis of phosphinic acid analogs of glycyl-glycine and crystal structure of N-glycyl-aminomethyl-(phenylphosphinic) acid. Synth Commun 32:79–88

    Article  CAS  Google Scholar 

  • Meng FH, Xu JX (2010) Direct synthesis of phosphinopeptides containing C-terminal α-aminoalkylphosphinic acids. Amino Acids 39:533–538

    Article  PubMed  CAS  Google Scholar 

  • Moree WJ, van Gent LC, van der Marel GA, Liskamp RM J (1993) Synthesis of peptides containing a sulfinamide or a sulfonamide transition-state isostere. Tetrahedron 49:1133–1150

    Article  CAS  Google Scholar 

  • Moree WJ, van der Marel GA, Liskamp RM J (1995) Synthesis of peptidosulfinamides and peptidosulfonamides: peptidomimetics containing the sulfinamide or sulfonamide transition-state isostere. J Org Chem 60:5157–5169

    Article  CAS  Google Scholar 

  • Ravaschino EL, Docampo R, Rodriguez JB (2006) Design, synthesis, and biological evaluation of phosphinopeptides against Trypanosoma cruzi targeting trypanothione biosynthesis. J Med Chem 49:426–435

    Article  PubMed  CAS  Google Scholar 

  • Soloshonok VA, Belokon YN, Kuzmina NA, Maleev VI, Svistunova NY, Solodenko VA, Kukhar VP (1992) Asymmetric synthesis of phosphorus analogs of dicarboxylic alfa-amino acids. J Chem Soc Perkin Trans 1(12):1525–1529

    Google Scholar 

  • Solodenko V, Kasheva T, Kukhar V (1991) Preparation of N-acylated phosphonopeptides with free phosphonic group. Synth Commun 21:1631–1641

    Article  CAS  Google Scholar 

  • Sorochinsky AE, Soloshonok VA (2010) Asymmetric synthesis of fluorine-containing amines, amino alcohols, alfa- and beta-amino acids mediated by chiral sulfinyl group. J Fluor Chem 131:127–128

    Article  CAS  Google Scholar 

  • Vassiliou S, Grabowiecka A, Kosikowska P, Yiotakis A, Kafarski P, Berlicki L (2008) Design, synthesis, and evaluation of novel organophosphorus inhibitors of bacterial ureases. J Med Chem 51:5736–5744

    Article  PubMed  CAS  Google Scholar 

  • Weinberg KG (1975) Synthesis of arylphosphionous dichlorides, diarylphosphinous chlorides, and 1, 6-diphosphatriptycene from elemental phosphorus. J Org Chem 40:3586

    Article  CAS  Google Scholar 

  • Xu JX (2003) Synthesis of hydroxyalkanesulfonic acids, aminoalkanesulfonic acids and sulfonopeptides. Chin J Org Chem (Youji Huaxue) 23:1–9

    Google Scholar 

  • Xu JX, Fu NY (2000) A facile synthesis of N-protected 1-aminoalkylphosphonamidate derivatives. Synth Commun 30:4137–4145

    Article  CAS  Google Scholar 

  • Xu JX, Fu NY (2001) A novel and convenient method for synthesizing unsymmetrical N-benzyloxycarbonyl-protected 1-amino-1-aryl-alkylphosphonate mixed diesters. J Chem Soc Perkin Trans 1(10):1223–1226

    Article  Google Scholar 

  • Xu JX, Gao YH (2006) Straightforward synthesis of depsiphosphonopeptides via Mannich-type multiple component condensation. Synthesis 783–788

  • Xu JX, Wei M (2001) A convenient method for the synthesis of N-protected 1-aminoalkyl-phosphonate mixed monothioesters and dithioesters. Synth Commun 31:1489–1497

    Article  CAS  Google Scholar 

  • Xu JX, Yu L (1999) Synthesis of aminophosphonic acids and their eaters. Chin J Syn Chem (Hecheng Huaxue) 7:153–158

    CAS  Google Scholar 

  • Yiotakis A, Georgiadis D, Matziari M, Makaritis A, Dive V (2004) Phosphinic peptides: synthetic approaches and biochemical evaluation as Zn-metalloprotease inhibitors. Curr Org Chem 8:1135–1158

    Article  CAS  Google Scholar 

  • Zhang YH, Huang WQ, Men AJ, He BL (1993) Use of cation exchange resin in synthesis of N-substituted 1-aminoalkanephosphonic and -phosphinic acids. Chin Chem Lett 4:203–204

    CAS  Google Scholar 

  • Zhang W, Wang BY, Chen N, Du DM, Xu JX (2008) Expeditious and practical synthesis of various substituted taurines from amino alcohols. Synthesis 197–200

Download references

Acknowledgments

The project was supported by National Natural Science Foundation of China (No. 20092013 and 20772005), Beijing Natural Science Foundation (No. 2092022), and University Innovative Research Grant award (10Si003), BUCT, 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxi Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, F., He, F., Song, X. et al. Facile synthesis of hybrid sulfonophosphinodipeptides composing of taurines and 1-aminoalkylphosphinic acids. Amino Acids 43, 423–429 (2012). https://doi.org/10.1007/s00726-011-1098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1098-5

Keywords

Navigation