Skip to main content
Log in

Synthesis of the amino acid conjugates of epi-jasmonic acid

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The TES ether of the C6-hydroxy derivative of naturally occurring epi-jasmonic acid (epi-JA) was designed as epimerization-free equivalent of epi-JA. The TES ether was synthesized from (1R,4S)-4-hydroxycyclopent-2-enyl acetate in 13 steps. The acid part of the ether was activated with ClCO2Bui and subjected to condensation with l-amino acid at room temperature for 48 h. The TES group in the condensation product was removed in HCO2H (0°C, 30 min) and the resulting hydroxyl group was oxidized with Jones reagent (acetone, 0°C, 30 min) to furnish the amino acid conjugate of epi-JA. The amino acids examined are l-isoleucine, l-leucine, l-alanine, l-valine, and d-allo-isoleucine, which afforded the conjugates in 48–68% yields with 89–96% diastereomeric purity over the trans isomers. Similarly, the possible three stereoisomers of epi-JA were condensed with l-isoleucine successfully, producing the corresponding stereoisomers in good yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  • Acharya HP, Kobayashi Y (2006) Highly efficient total synthesis of Δ12-PGJ2, 15-deoxy-Δ12,14-PGJ2, and their analogues. Tetrahedron 62:3329–3343

    Article  CAS  Google Scholar 

  • Ainai T, Matsuumi M, Kobayashi Y (2003) Efficient total synthesis of 12-oxo-PDA and OPC-8:0. J Org Chem 68:7825–7832

    Article  PubMed  CAS  Google Scholar 

  • Asamitsu Y, Nakamura Y, Ueda M, Kuwahara S, Kiyota H (2006) Synthesis and odor description of both enantiomers of methyl 4,5-didehydrojasmonate, a component of jasmin absolute. Chem Biodivers 3:654–659

    Article  PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  • Chung HS, Cooke TF, DePew CL, Patel LC, Ogawa N, Kobayashi Y, Howe GA (2010) Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling. Plant J 63:613–622

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  PubMed  CAS  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nature Chem Biol 5:344–350

    Article  CAS  Google Scholar 

  • Kiyota H, Higashi E, Koike T, Oritani T (2001) Lipase-catalyzed preparation of both enantiomers of methyl jasmonate. Tetrahedron Asymmetry 12:1035–1038

    Article  CAS  Google Scholar 

  • Kramell R, Schmidt J, Schneider G, Sembdner G, Schreiber K (1988) Synthesis of N-(jasmonoyl)amino acid conjugates. Tetrahedron 44:5791–5807

    Article  CAS  Google Scholar 

  • Kramell R, Miersch O, Hause B, Ortel B, Parthier B, Wasternack C (1997a) Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley (Hordeum vulgare L.) leaves. FEBS Lett 414:197–202

    Article  PubMed  Google Scholar 

  • Kramell R, Schneider G, Miersch O (1997b) Chiral separation of amide conjugates of jasmonic acid by liquid chromatography. Chromatographia 45:104–108

    Article  CAS  Google Scholar 

  • Miersch O, Brückner B, Schmidt J, Sembdner G (1992) Cyclopentane fatty acids from Gibberella Fujikuroi. Phytochemistry 31:3835–3837

    Article  CAS  Google Scholar 

  • Miersch O, Bohlmann H, Wasternack C (1999) Jasmonates and related compounds from Fusarium oxysporum. Phytochemistry 50:517–523

    Article  CAS  Google Scholar 

  • Nonaka H, Ogawa N, Maeda N, Wang YG, Kobayashi Y (2010) Stereoselective synthesis of epi-jasmonic acid, tuberonic acid, and 12-oxo-PDA. Org Biomol Chem 8:5212–5223

    Article  PubMed  CAS  Google Scholar 

  • Ogawa N, Kobayashi Y (2008) Strategy for synthesis of the isoleucine conjugate of epi-jasmonic acid. Tetrahedron Lett 49:7124–7127

    Article  CAS  Google Scholar 

  • Schmidt J, Kramell R, Brückner C, Schneider G, Sembdner G, Schreiber K, Stach J, Jensen E (1990) Gas chromatographic/mass spectrometric and tandem mass spectrometric investigations of synthetic amino acid conjugates of jasmonic acid and endogenously occurring related compounds from Vicia faba L. Biomed Environ Mass Spectrom 19:327–338

    Article  CAS  Google Scholar 

  • Seto H, Fujioka S, Fujisawa H, Goto K, Nojiri H, Yamane H, Yoshida S (1996) Preparation of (±)-2-(2,3–2H2)jasmonic acid and its methyl ester, methyl (±)-2-(2,3-2H2)jasmonate. Biosci Biotechnol Biochem 60:1709–1711

    Article  CAS  Google Scholar 

  • Seto H, Nomura E, Fujioka S, Koshino H, Suenaga T, Yoshida S (1999) Easy preparation of methyl 7-epi-jasmonate and four stereoisomers of methyl cucurbate, and assessment of the stereogenic effect of jasmonate on phytohormonal activities. Biosci Biotechnol Biochem 63:361–367

    Article  CAS  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 468:400–405

    Article  PubMed  CAS  Google Scholar 

  • Soloshonok VA (2002) Highly diastereoselective Michael addition reactions between nucleophilic glycine equivalents and β-substituted-α,β-unsaturated carboxylic acid derivatives; a general approach to the stereochemically defined and sterically χ-constrained α-amino acids. Curr Org Chem 6:341–364

    Article  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in arabidopsis. Plant Cell 16:2117–2127

    Article  PubMed  CAS  Google Scholar 

  • Tamogami S, Rakwal R, Agrawal GK (2008) Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Biochem Biophys Res Commun 376:723–727

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Walter A, Mazars C, Maitrejean M, Hopke J, Ranjeva R, Boland W, Mithöfer A (2007) Structural requirements of jasmonates and synthetic analogues as inducers of Ca2+ signals in the nucleus and the cytosol of plant cells. Angew Chem Int Ed 46:4783–4785

    Article  CAS  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Racemic methyl jasmonate was kindly provided by Zeon Co. Ltd., Japan. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kobayashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1050 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, N., Kobayashi, Y. Synthesis of the amino acid conjugates of epi-jasmonic acid. Amino Acids 42, 1955–1966 (2012). https://doi.org/10.1007/s00726-011-0925-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0925-z

Keywords

Navigation