Skip to main content
Log in

Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

While there are significant genotypic differences in cadmium (Cd) uptake and distribution in soybean cultivars, little attention has been paid to the underlying molecular mechanisms. We adopted a comparative proteomic approach coupled with metabolite analysis to examine Cd uptake and translocation in two contrasting Cd-accumulating soybean cultivars, Enrei and Harosoy, which accumulate higher amount of Cd in the roots and aerial parts, respectively. Proteins extracted from the root microsomal fraction were evaluated by immunoblot analysis using different subcellular marker proteins. Analysis of control and Cd-exposed samples by two-dimensional gel electrophoresis coupled with mass spectrometry revealed a total of 13 and 11 differentially expressed proteins in the Enrei and Harosoy cultivars, respectively. Metabolome profiling identified a total of 32 metabolites, the expression of 18 of which was significantly altered in at least in one cultivar in response to Cd stress. Analysis of the combined proteomic and metabolomic results revealed that proteins and amino acids associate with Cd-chelating pathways are highly active in the Enrei cultivar. In addition, proteins associated with lignin biosynthesis are significantly upregulated in the Enrei cultivar under Cd stress. Our results indicate that in the Enrei cultivar, Cd-chelating agents may bind excess free Cd ion and that translocation of Cd from the roots to the aerial parts might be prevented by increased xylem lignification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahsan N, Komatsu S (2009) Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics 9:4889–4907

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Renaut J, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9:2602–2621

    Article  PubMed  CAS  Google Scholar 

  • Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol–peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392

    Article  CAS  Google Scholar 

  • Arao T, Ae N, Sugiyama M, Takahashi M (2003) Genotypic differences in cadmium uptake and distribution in soybeans. Plant Soil 251:247–253

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS, Hussain D, Haydon MJ (2003) Structural and functional relationships between type 1B heavy metal-transporting P-type ATPases in Arabidopsis. New Phytol 159:315–321

    Article  CAS  Google Scholar 

  • Douchiche O, Rihouey C, Schaumann A, Driouich A, Morvan C (2007) Cadmium-induced alterations of the structural features of pectins in flax hypocotyl. Planta 225:1301–1312

    Article  PubMed  CAS  Google Scholar 

  • Douchiche O, Driouich A, Morvan C (2010) Spatial regulation of cell-wall structure in response to heavy metal stress: cadmium-induced alteration of the methyl-esterification pattern of homogalacturonans. Ann Bot 105:481–491

    Article  PubMed  CAS  Google Scholar 

  • Durand TC, Sergeant K, Planchon S, Carpin S, Label P, Morabito D, Hausman JF, Renaut J (2010) Acute metal stress in Populus tremula × P. alba (717–1B4 genotype): leaf and cambial proteome changes induced by cadmium 2+. Proteomics 10:349–368

    Article  PubMed  CAS  Google Scholar 

  • Epel BL, Van Lent JWM, Cohen L, Kotlizky G, Katz A, Yahalom A (1996) A 41 kDa protein isolated from maize mesocotyl cell walls immunolocalizes to plasmodesmata. Protoplasma 191:70–78

    Article  CAS  Google Scholar 

  • Fagioni M, Zolla L (2009) Does the different proteomic profile found in apical and basal leaves of spinach reveal a strategy of this plant toward cadmium pollution response? J Proteome Res 8:2519–2529

    Article  PubMed  CAS  Google Scholar 

  • Galili G, Tang G, Zhu X, Gakiere B (2001) Lysine catabolism: a stress and development super-regulated metabolic pathway. Curr Opin Plant Biol 4:261–266

    Article  PubMed  CAS  Google Scholar 

  • Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–310

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  PubMed  CAS  Google Scholar 

  • Hanikenne M, Krämer U, Demoulin V, Baurain D (2005) A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol 137:428–446

    Article  PubMed  CAS  Google Scholar 

  • Hradilová J, Rehulka P, Rehulková H, Vrbová M, Griga M, Brzobohatý B (2010) Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis 31:421–431

    Article  PubMed  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530

    Article  PubMed  CAS  Google Scholar 

  • Komatsu S, Yamamoto R, Nanjo Y, Mikami Y, Yunokawa H, Sakata K (2009) A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. Proteome Res 8:4766–4778

    Google Scholar 

  • Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK (2004) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16:1378–1391

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    Article  PubMed  CAS  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346

    Article  PubMed  CAS  Google Scholar 

  • Marjamaa K, Kukkola EM, Fagerstedt KV (2009) The role of xylem class III peroxidases in lignification. J Exp Bot 60:367–376

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Ae N, Ishikawa S (2007) Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environ Pollut 145:96–103

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Okazaki K, Benkeblia N, Wasaki T, Uchimiya H, Komatsu S, Shinano T (2009) Metabolomic approach on soybean. In: Bilyeu K, Ratnaparkhe M, Kole C (eds) Genetics, genomics and breeding in soybean. Science Publisher, Enfield, New Hampshire, pp 313–333

    Google Scholar 

  • Ohkama-Ohtsu N, Oikawa A, Zhaom P, Xiang C, Saito K, Oliver DJ (2008) A {gamma}-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiol 148:1603–1613

    Article  PubMed  CAS  Google Scholar 

  • Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Inzé D, Goossens A (2008) Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci U S A 105:1380–1385

    Google Scholar 

  • Polge C, Jaquinod M, Holzer F, Bourguignon J, Walling L, Brouquisse R (2009) Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway: activation in response to cadmium. J Biol Chem 284:35412–35424

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 8:1532–1544

    Article  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Kärenlampi S, Van Belleghem F, Smeets K, Vangronsveld J (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254

    Article  PubMed  CAS  Google Scholar 

  • Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    Article  PubMed  CAS  Google Scholar 

  • Stepansky A, Less H, Angelovici R, Aharon R, Zhu X, Galili G (2006) Lysine catabolism, an effective versatile regulator of lysine level in plants. Amino Acids 30:121–125

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Zhang J, Zhang H, Ni Y, Zhang Q, Chen J, Guan Y (2010) The responses of Arabidopsis thaliana to cadmium exposure explored via metabolite profiling. Chemosphere 78:840–845

    Article  PubMed  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) A biological test system for the evaluation of the phytotoxicity of metal-contaminated soils. Environ Pollut 66:157–172

    Article  PubMed  Google Scholar 

  • van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Ver Loren van Themaat E, Koornneef M, Aarts MG (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agronomy 51:173–212

    Article  CAS  Google Scholar 

  • Watanabe M, Kusano M, Oikawa A, Fukushima A, Noji M, Saito K (2008) Physiological roles of the beta-substituted alanine synthase gene family in Arabidopsis. Plant Physiol 146:310–320

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Xue YJ, Tao L, Yang ZM (2008) Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agric Food Chem 56:9676–9684

    Article  PubMed  CAS  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    PubMed  CAS  Google Scholar 

  • Yang YJ, Li-Ming Cheng, Liu ZH (2007) Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci 172:632–639

    Article  CAS  Google Scholar 

Download references

Acknowledgments

NA acknowledges the support of Japan Society for Promotion of Science. This work is also supported by the grant from National institute of Agriculture and Food Research Organization, Japan. Authors are thankful to Mr. MZ Nouri, National Institute of Crop Science for his technical help in MS analysis. We also thank to Dr. Y. Nanjo and Dr. K. Nishizawa, NICS for their valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setsuko Komatsu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

726_2010_809_MOESM1_ESM.ppt

Representative 2-DE gel images of three biological replicates of microsomal proteins of control and Cd-treated soybean cultivars. A total of 100 μg protein was extracted, separated by 2-DE, and visualized with silver staining. (PPT 18584 kb)

726_2010_809_MOESM2_ESM.ppt

Representative 2-DE gel images of silver stained and CBB stained microsomal proteins of soybean roots. A total of 100 and 400 μg proteins were extracted, separated by 2-DE, and visualized with silver and CBB staining, respectively. Lower panel represents the magnified views of some spots that were common in both staining methods. (PPT 2351 kb)

726_2010_809_MOESM3_ESM.ppt

Graphical presentation of differentially expressed microsomal proteins in soybean cultivars in response to Cd stress. The height of each bar represents the average of three individual identical experiments (±SE). (PPT 150 kb)

Supplementary material 4 (DOC 33 kb)

Supplementary material 5 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahsan, N., Nakamura, T. & Komatsu, S. Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress. Amino Acids 42, 317–327 (2012). https://doi.org/10.1007/s00726-010-0809-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0809-7

Keywords

Navigation