Skip to main content

Advertisement

Log in

The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Some mastoparan peptides extracted from social wasps display antimicrobial activity and some are hemolytic and cytotoxic. Although the cell specificity of these peptides is complex and poorly understood, it is believed that their net charges and their hydrophobicity contribute to modulate their biological activities. We report a study, using fluorescence and circular dichroism spectroscopies, evaluating the influence of these two parameters on the lytic activities of five mastoparans in zwitterionic and anionic phospholipid vesicles. Four of these peptides, extracted from the venom of the social wasp Polybia paulista, present both acidic and basic residues with net charges ranging from +1 to +3 which were compared to Mastoparan-X with three basic residues and net charge +4. Previous studies revealed that these peptides have moderate-to-strong antibacterial activity against Gram-positive and Gram-negative microorganisms and some of them are hemolytic. Their affinity and lytic activity in zwitterionic vesicles decrease with the net electrical charges and the dose response curves are more cooperative for the less charged peptides. Higher charged peptides display higher affinity and lytic activity in anionic vesicles. The present study shows that the acidic residues play an important role in modulating the peptides’ lytic and biological activities and influence differently when the peptide is hydrophobic or when the acidic residue is in a hydrophilic peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida PF, Pokorny A (2009) Mechanism of antimicrobial, cytolytic and cell-penetrating peptides: from kinetics to thermodynamics. Biochemistry 48:8083–8093

    Article  CAS  PubMed  Google Scholar 

  • Andreu D, Rivas L (1999) Animal antimicrobial peptides: an overview. Biopolymers 47:415–433

    Article  Google Scholar 

  • Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry 13:222–245

    Article  CAS  PubMed  Google Scholar 

  • Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potencial to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462:71–87

    Article  CAS  PubMed  Google Scholar 

  • Dathe M, Meyer J, Beyermann M, Maul B, Hoischen C, Bienert M (2002) General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. Biochim Biophys Acta 1558:171

    Article  CAS  PubMed  Google Scholar 

  • Deber CM, Li S-C (1995) Peptides in membranes: helicity and hydrophobicity. Biopolymers 37:295–318

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos Cabrera MP, Costa ST, Souza BM, Palma MS, Ruggiero JR, Ruggiero Neto J (2008) Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1. Eur Biophys J 37:879

    Article  CAS  PubMed  Google Scholar 

  • Eftink MR, Ghiron CA (1976) Fluorescence quenching of indole and model micelle systems. Phys Chem J 80(5):486–493

    Article  CAS  Google Scholar 

  • Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142

    Article  CAS  PubMed  Google Scholar 

  • Herce HD, Garcia AE (2007) Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proc Natl Acad Sci USA 104:20805–20810

    Article  CAS  PubMed  Google Scholar 

  • Kiyota T, Lee S, Sugihara G (1996) Design and synthesis of amphiphilic α- helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Biochemistry 35:13196–13204

    Article  CAS  PubMed  Google Scholar 

  • Ladokhin AS, Jayasinghe S, White SH (2000) How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal Biochem 285:235–245

    Article  CAS  PubMed  Google Scholar 

  • Marqusee S, Baldwin RL (1989) Helix stabilization by Glu-. Lys + salt bridges in short peptides of de novo design. Proc Natl Acad Sci USA 84:8898–8902

    Article  Google Scholar 

  • Mishra VK, Palgunashari MN, Segrest J, Anantharamaiah GM (1994) Interactions of synthetic peptides analogs of class A amphypathic helix with lipids. J Biol Chem 269:7185–7191

    CAS  PubMed  Google Scholar 

  • Nakajima T (1986) Pharmacological biochemistry of Veside venom. In: Piek T (ed) Venom of the Hymenoptera—biochemical, pharmacological and behavioral aspects. Academic Press, London, pp 309–327

    Google Scholar 

  • Pantos A, Tsogas I, Paleos CM (2008) Guanidinium group: a versatile moiety inducing transport and multicompartimentalization in complementary membranes. Biochim Biophys Acta 1778:811–823

    Article  CAS  PubMed  Google Scholar 

  • Rouser G, Fleischer S, Yamamoto A (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorous analysis of spots. Lipids 5:491–496

    Article  Google Scholar 

  • Schoemaker KR, Kim PS, Brems DN, Marqusee S, York EJ, Chaiken IM, Stewart JM, Baldwin RL (1985) Nature of the charged group effect on the stability of the C-peptide helix. Proc Natl Acad Sci USA 82:2349–2353

    Article  Google Scholar 

  • Schwarz G, Robert CH (1990) Pore formation kinetics in membranes determined from the release of marker molecules out of liposomes or cells. Biophys J 58:577–583

    Article  CAS  PubMed  Google Scholar 

  • Seelig J (2004) Thermodynamics of lipid-peptide interactions. Biochim Biophys Acta 1666:40–50

    CAS  PubMed  Google Scholar 

  • Sforça ML, Oyama S Jr, Canduri F, Lorenzi CCB, Pertinhez TA, Konno K, Souza BM, Palma MS, Ruggiero Neto J, de Azevedo Jr WF, Spisni A (2004) How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the Eumenine solitary wasp. Biochemistry 43:5608

    Article  PubMed  Google Scholar 

  • Sitaram N, Nagaraj R (1999) Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta 1462:29–54

    Article  CAS  PubMed  Google Scholar 

  • Souza BM (2007) Estrutura a função de mastoparanos dos venenos de vespas. Dissertation, Universidade Estadual Paulista, Rio Claro, Brazil

  • Souza BM, Mendes MA, Santos LD, Marques MR, Cesar LMM, Almeida RNA, Pagnocca FC, Konno K, Palma MS (2005) Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides 26:2157–2164

    Article  CAS  PubMed  Google Scholar 

  • Souza BM, Silva AR, Resende VMF, Arcuri HA, dos Santos Cabrera MP, Ruggiero Neto J, Palma MS (2009) Characterization of two novel polyfunctional mastoparan peptides from the venom of the social wasp Polybia paulista. Peptides 30:1387–1395

    Article  PubMed  Google Scholar 

  • Taheri-Araghi S, Ha B-Y (2007) Physical basis for membrane-cherged selectivity of cationic antimicrobial peptides. Phys Rev Lett 98:168101

    Article  PubMed  Google Scholar 

  • Yandek LE, Pokorny A, Almeida PF (2009) wasp mastoparan follow the same mechanism as the cell-penetrating peptide transportan 10. Biochemistry 48:7342–7351

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zidovevetzki R, Rost B, Armstrong DL, Pecht I (2003) Transmembrane domains in the functions of fc receptors. Bioplys Chem 100:555–575

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by grants from FAPESP Proc. 06/57122-6; 07/03657-0), CNPq and Instituto Nacional de Ciência e Tecnologia em Imunologia (INCT/CNPq-MCT). MSP and JRN are researchers for the Brazilian Council for Scientific and Technological Development (CNPq). MPSC acknowledges CAPES-PRODOC support. NBL and LCC receive CAPES MsC grants. BMS acknowledge CAPES for the grant in the Nanobiotec program.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Ruggiero Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leite, N.B., da Costa, L.C., dos Santos Alvares, D. et al. The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy. Amino Acids 40, 91–100 (2011). https://doi.org/10.1007/s00726-010-0511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0511-9

Keywords

Navigation