Skip to main content

Advertisement

Log in

A new non-natural arginine-like amino acid derivative with a sulfamoyl group in the side-chain

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Sulfamoylation of the l-ornithine methyl ester side-chain generates a non-natural arginine isostere which can be coupled with N-Fmoc-l-proline to synthesize analogues which maintain the structural characteristics of the biologically important Pro-Arg dipeptide sequence. As a probe of its biological importance, the sulfamoylated amino acid derivative was also incorporated as P1 residue in tripeptide structures matching the C-terminal subsequence of fibrinogen. The reported results demonstrate that the functionalization of l-ornithine side-chain with a neutral sulfamoyl group can generate an arginine bioisostere which can be used for the synthesis of prototypes of a new class of human thrombin inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DMF:

N,N-Dimethylformamide

MTBE:

Methyl-tert-butyl-ether

DMAP:

4-(N,N-Dimethylamino)pyridine

DIEA:

N,N-Diisopropylethylamine

HOBt:

1-Hydroxybenzotriazole

EDCI:

1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride

TFA:

Trifluoroacetic acid

α-CHCA:

α-Cyano-4-hydroxy-trans-cynnamic acid

DEPT:

Distorsionless enhancement by polarization transfer

TOCSY:

Total correlation spectroscopy

DQF-COSY:

Double quantum filtered correlation spectroscopy

TLC:

Thin layer chromatography

FCC:

Flash column chromatography

References

  • Austin RJ, Xia T, Ren J, Takahashi TT, Roberts RW (2002) Designed arginine-rich RNA-binding peptides with picomolar affinity. J Am Chem Soc 124:10966–10967. doi:10.1021/ja026610b

    Article  CAS  PubMed  Google Scholar 

  • Balbo PB, Patel CN, Sell KG, Adcock RS, Neelakantan S, Crooks PA, Oliveira MA (2003) Spectrophotometric and steady-state kinetic analysis of the biosynthetic arginine decarboxylase of Yersinia pestis utilizing arginine analogues as inhibitors and alternative substrates. Biochemistry 42:15189–15196. doi:10.1021/bi0344127

    Article  CAS  PubMed  Google Scholar 

  • Bax A, Davis DG (1985) MLEV-17 based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360

    CAS  Google Scholar 

  • Bode W, Turk D, Kershikov A (1992) The refined 1.9-A X-ray crystal structure of d-Phe-Pro-Arg chloromethylketone-inhibited human α-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci 1:426–471

    Article  CAS  PubMed  Google Scholar 

  • Braunschweiler L, Ernst RR (1983) Coherence transfer by isotropic mixing—application to proton correlation spectroscopy. J Magn Reson 53:521–528

    CAS  Google Scholar 

  • Das J, Kimball SD (1995) Thrombin active site inhibitors. Bioorg Med Chem 3:999–1007. doi:10.1016/0968-0896(95)00104-O

    Article  CAS  PubMed  Google Scholar 

  • De Tar De Los F, Luthra NP (1977) Conformations of proline. J Am Chem Soc 99:1232–1244. doi:10.1021/ja00446a040

    Article  Google Scholar 

  • Derome A, Williamson M (1990) Rapid-pulsing artifacts in double-quantum-filtered COSY. J Magn Reson 88:117–185

    Google Scholar 

  • Di Gioia ML, Leggio A, Le Pera A, Liguori A, Napoli A, Siciliano C, Sindona G (2003) “One-pot” methylation of N-nosyl-α-amino acid methyl esters with diazomethane and their coupling to prepare N-methyl dipeptides. J Org Chem 68:7416–7421. doi:10.1021/jo034233v

    Article  CAS  PubMed  Google Scholar 

  • Di Gioia ML, Leggio A, Le Pera A, Liguori A, Perri F, Siciliano C (2004) Alternative and chemoselective deprotection of the α-amino and carboxy functions of N-Fmoc-amino acid and N-Fmoc dipeptide methyl esters by modulation of the molar ratio in the AlCl3/N,N-dimethylaniline reagent system. Eur J Org Chem 4437–4441. doi:10.1002/ejoc.200400321

  • Di Gioia ML, Leggio A, Le Pera A, Siciliano C, Sindona G, Liguori A (2004b) An efficient and highly selective deprotection of N-Fmoc-α-amino acid and lipophilic N-Fmoc-dipeptide methyl esters with aluminium trichloride and N,N-dimethylaniline. J Pept Res 63:383–387. doi:10.1111/j.1399-3011.2004.00104.x

    Article  CAS  PubMed  Google Scholar 

  • Dougherty JM, Jiménez M, Hanson PR (2005) Synthesis of cyclic sulfamoyl carbamates and ureas via ring-closing metathesis. Tetrahedron 61:6218–6230. doi:10.1016/j.tet.2005.03.140

    Article  CAS  Google Scholar 

  • Fischer MJ, Giese U, Harms CS, Kinnick MD, Lindstrom TD, McCowan JR, Mest H-J, Morin JM Jr, Mullaney JT, Paal M, Rapp A, Rühter G, Ruterbories KJ, Sall DJ, Scarborough RM, Schotten T, Stenzel W, Towner RD, Um SL, Utterback BG, Wyss VL, Jakubowski JA (2000) Fused bicyclic Gly-Asp β-turn mimics with potent affinity for GPIIb-IIIa. Exploration of the arginine isostere. Bioorg Med Chem Lett 10:385–389. doi:10.1016/S0960-894X(00)00008-1

    Article  Google Scholar 

  • Garrett M, Tao T, Jolly WL (1964) The protonation and deprotonation of sulfamide and sulfamate in aqueous solutions. J Phys Chem 68:824–826. doi:10.1021/j100786a020

    Article  CAS  Google Scholar 

  • Groll M, Nazif T, Huber R, Bogyo M (2002) Probing structural determinants distal to the site of hydrolysis that control substrate specificity of the 20S proteasome. Chem Biol 9:655–662. doi:10.1016/S1074-5521(02)00144-8

    Article  CAS  PubMed  Google Scholar 

  • Groll M, Götz M, Kaiser M, Weyher E, Moroder L (2006) TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome. Chem Biol 13:607–614. doi:10.1016/j.chembiol.2006.04.005

    Article  CAS  PubMed  Google Scholar 

  • Hadden MK, Orwig KS, Kokko KP, Mazella J, Dix TA (2005) Design, synthesis, and evaluation of the antipsychotic potential of orally bioavailable neurotensin (8–13) analogues containing non-natural arginine and lysine residues. Neuropharmacology 49:1149–1159. doi:10.1016/j.neuropharm.2005.06.010

    Article  CAS  PubMed  Google Scholar 

  • Hauptmann J, Stürzebecher J (1999) Synthetic inhibitors of thrombin and factor Xa: from bench to bedside. Thromb Res 93:203–241. doi:10.1016/S0049-3848(98)00192-3

    Article  CAS  PubMed  Google Scholar 

  • Isaacs RCA, Solinsky MG, Cutrona KJ, Newton CL, Naylor-Olsen AM, Krueger JA, Lewis SD, Lucas BJ (2006) Structure-based design of novel groups for use in the P1 position of thrombin inhibitor scaffolds. Part 1: weakly basic azoles. Bioorg Med Chem Lett 16:338–342

    Article  CAS  PubMed  Google Scholar 

  • James JA, McClain MT, Williams GDG, Harley JB (1999) Side-chain specificities and molecular modelling of peptide determinants for two anti-Sm B/B′ autoantibodies. J Autoimmun 12:43–49. doi:10.1006/jaut.1998.0252

    Article  CAS  PubMed  Google Scholar 

  • Jim RTS (1957) A study of the plasma thrombin time. J Lab Clin Med 50:45–60

    CAS  PubMed  Google Scholar 

  • Kim HH, Lee WS, Yang JM, Shin S (2003) Basic peptide system for efficient delivery of foreign genes. Biochim Biophys Acta 1640:129–136. doi:10.1016/S0167-4889(03)00028-4

    Article  CAS  PubMed  Google Scholar 

  • Kloek JA, Leschinsky KL (1976) An improved synthesis of sulfamoyl chlorides. J Org Chem 41:4028–4029. doi:10.1021/jo00887a022

    Article  CAS  Google Scholar 

  • Kokko KP, Arrigoni CE, Dix TA (2001) Selectivity enhancement induced by substitution of non-natural analogues of arginine and lysine in arginine-based thrombin inhibitors. Bioorg Med Chem Lett 11:1947–1950. doi:10.1016/S0960-894X(01)00328-6

    Article  CAS  PubMed  Google Scholar 

  • Koskinen AMP, Helaja J, Kumpulainen ETT, Koivisto J, Mansikkamäki H, Rissanen K (2005) Locked conformations for proline pyrrolidine ring: synthesis and conformational analysis of cis- and trans-4-tert-butylprolines. J Org Chem 70:6447–6453. doi:10.1021/jo050838a

    Article  CAS  PubMed  Google Scholar 

  • Langenhan JM, Fisk JD, Gellman SH (2001) Evaluation of hydrogen bonding complementarity between a secondary sulfonamide and an α-amino acid residue. Org Lett 3:2559–2562. doi:10.1021/ol016237x

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Jung W-H, Kang M, Lee S-H (2000) Noncovalent thrombin inhibitors incorporating an imidazolylethynyl P1. Bioorg Med Chem Lett 10:2775–2778. doi:10.1016/S0960-894X(00)00579-5

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Park CW, Jung W-H, Park HD, Lee SH, Chung KC, Park SK, Kwon OH, Kang M, Park D-H, Lee SK, Kim EE, Yoon SK, Kim A (2003) Efficacious and orally bioavailable thrombin inhibitors based on a 2, 5-thienylamidine at the P1 position: discovery of N-carboxymethyl-d-diphenylalanyl-l-prolyl[(5-amidino-2-thienyl)methyl]amide. J Med Chem 46:3612–3622. doi:10.1021/jm030025j

    Article  CAS  PubMed  Google Scholar 

  • Leggio A (1997) Convenient and stereospecific homologation of N-fluorenylmethoxycarbonyl-α-amino acids to their β-homologues. J Chem Soc Perkin Trans 1:1969–1971. doi:10.1039/a700731k and references cited therein

    Article  Google Scholar 

  • Leggio A, Liguori A, Napoli A, Siciliano C, Sindona G (2000) New strategies for an efficient removal of the 9-fluorenylmethoxycarbonyl (Fmoc) protecting group in the peptide synthesis. Eur J Org Chem 573–575. doi:10.1002/(SICI)1099-0690(200002)2000:4<573::AID-EJOC573>3.0.CO;2-I

  • Maryanoff BE (2004) Inhibitors of serine proteases as potential therapeutic agents: the road from thrombin to tryptase to cathepsin G. J Med Chem 47:769–787. doi:10.1021/jm030493t

    Article  CAS  PubMed  Google Scholar 

  • McDonald H (2005) Overview of hemostasis and thrombosis; current status of antithrombotic therapies. Thromb Res 117:15–17. doi:10.1016/j.thromres.2005.05.007

    Article  CAS  Google Scholar 

  • Pellegrini N, Schmitt M, Guery S, Bourguignon J-J (2002) New strategies towards proline derivatives as conformationally constrained arginine analogues. Tetrahedron Lett 43:3243–3246. doi:10.1016/S0040-4039(02)00424-0

    Article  CAS  Google Scholar 

  • Peterlin-Mašič L, Kranjc A, Marinko P, Mlinšek G, Šolmajer T, Stegnar M, Kikelj D (2003) Selective 3-amino-2-pyridinone acetamide thrombin inhibitors incorporating weakly basic partially saturated heterobicyclic P1-arginine mimetics. Bioorg Med Chem Lett 13:3171–3176. doi:10.1016/S0960-894X(03)00717-0

    Article  PubMed  CAS  Google Scholar 

  • Powers JC, Asgian JL, Ekici ÖD, James KE (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102:4639–4750. doi:10.1021/cr010182v

    Article  CAS  PubMed  Google Scholar 

  • Proctor RB, Rappaport SI (1961) The partial thromboplastin time with kaolin. Am J Clin Pathol 36:212–219

    CAS  PubMed  Google Scholar 

  • Quan ML, Ellis CD, He MY, Lliauw AY, Lam PYS, Rossi KA, Knabb RM, Luettgen JM, Wright MR, Wong PC, Wexler RR (2003) Nonbenzamidine isoxazoline derivatives as factor Xa inhibitors. Bioorg Med Chem Lett 13:1023–1028. doi:10.1016/S0960-894X(03)00080-5

    Article  CAS  PubMed  Google Scholar 

  • Radkiewicz JL, McAllister MA, Goldstein E, Houk KN (1998) A theoretical investigation of phosphonamidates and sulfonamides as protease transition state isosteres. J Org Chem 63:1419–1428. doi:10.1021/jo971425f

    Article  CAS  Google Scholar 

  • Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24:536–547. doi:10.1016/j.ijantimicag.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  • Rence M, Sørensen OW, Bodenhausen G, Wagner G, Ernst RR, Wüthrich K (1983) Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun 117:479–485. doi:10.1016/0006-291X(83)91225-1

    Article  Google Scholar 

  • Rockwell NC, Krysan DJ, Komiyama T, Fuller RS (2002) Precursor processing by Kex2/furin proteases. Chem Rev 102:4525–4548. doi:10.1021/cr010168i

    Article  CAS  PubMed  Google Scholar 

  • Romoff TT (2003) Racemization assays. In: Goodman M, Felix A, Moroder L, Toniolo C (eds) Houben–Weyl methods of organic chemistry. Synthesis of peptides and peptidomimetics, vol E22b. Thieme Verlag, Stuttgart, Germany, pp. 660–663; see also references cited herein

  • Salemme FR, Spurlino G, Bone R (1997) Serendipity meets precision: the integration of structure-based drug design and combinatorial chemistry for efficient drug discovery. Structure 5:319–324. doi:10.1016/S0969-2126(97)00189-5

    Article  CAS  PubMed  Google Scholar 

  • Schaal W, Karlsson A, Ahlsén G, Lindberg J, Andersson HO, Danielson HU, Classon B, Unge T, Samuelsson B, Hultén J, Hallberg A, Karlén A (2001) Synthesis and comparative molecular field analysis (CoMFA) of symmetric and nonsymmetric cyclic sulfamide HIV-1 protease inhibitors. J Med Chem 44:155–169. doi:10.1021/jm001024j

    Article  CAS  PubMed  Google Scholar 

  • Schmuck C, Geiger L (2005) Design and synthesis of a new class of arginine analogues with an improved anion binding site in the side chain. Chem Commun (Camb) 772–774. doi:10.1039/b415543b

  • Schug KA, Lindner W (2005) Noncovalent binding between guanidinium and anionic groups: focus on biological- and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues. Chem Rev 105:67–114. doi:10.1021/cr040603j

    Article  CAS  PubMed  Google Scholar 

  • Shearer BG, Lee S, Franzmann KW, White HAR, Sanders DCJ, Kiff RJ, Garvey EP, Furfine ES (1997) Conformationally restricted arginine analogues as inhibitors of human nitric oxide synthase. Bioorg Med Chem Lett 7:1763–1768. doi:10.1016/S0960-894X(97)00309-0

    Article  CAS  Google Scholar 

  • Spillane WJ, McHugh FA, Burke PO (1998) Elimination mechanisms in the anilinolysis of sulfamoyl chlorides in chloroform and acetonitrile. J Chem Soc Perkin Trans 2:13–18. doi:10.1039/a706410a

    Google Scholar 

  • St-Denis Y, Lévesque S, Bachand B, Edmunds JJ, Leblond L, Préville P, Tarazi M, Winocour PD, Siddiqui MA (2002) Novel bicyclic lactam inhibitors of thrombin: highly potent and selective inhibitors. Bioorg Med Chem Lett 12:1181–1184. doi:10.1016/S0960-894X(02)00131-2

    Article  CAS  PubMed  Google Scholar 

  • Sugase K, Horikawa M, Sugiyama M, Ishiguro MJ (2004) Restriction of a peptide turn conformation and conformational analysis of guanidino group using arginine-proline fused amino acids: application to mini atrial natriuretic peptide on binding to the receptor. J Med Chem 47:489–492. doi:10.1021/jm030232j

    Article  CAS  PubMed  Google Scholar 

  • Sugawara M, Tonan K, Ikawa S-I (2001) Effect of solvent on the cistrans conformational equilibrium of a proline imide bond of short model peptides in solution. Spectrochim Acta A Mol Biomol Spectrosc 57:1305–1316. doi:10.1016/S1386-1425(00)00493-5

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT, Scozzafava A, Briganti F, Clare BW (2000) Protease inhibitors: synthesis and QSAR study of novel classes of nonbasic thrombin inhibitors incorporating sulfonylguanidine and O-methylsulfonylisourea moieties at P1. J Med Chem 43:1793–1806. doi:10.1021/jm9903693

    Article  CAS  PubMed  Google Scholar 

  • Tapparelli C, Metternich R, Echardt C, Zurini M, Claeson G, Scully MF, Stone SR (1993) In vitro and in vivo characterization of a neutral boron-containing thrombin inhibitor. J Biol Chem 268:4734–4741

    CAS  PubMed  Google Scholar 

  • Tung C-H, Weissleder R (2003) Arginine containing peptides as delivery vectors. Adv Drug Deliv Rev 55:281–294. doi:10.1016/S0169-409X(02)00183-7

    Article  CAS  PubMed  Google Scholar 

  • Tyndall JDA, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active sites. Chem Rev 105:973–1000. doi:10.1021/cr040669e

    Article  CAS  PubMed  Google Scholar 

  • Weitz JI, Crowther M (2002) Direct thrombin inhibitors. Thromb Res 106:V275–V284. doi:10.1016/S0049-3848(02)00093-2

    Article  CAS  PubMed  Google Scholar 

  • Winum J-Y, Toupet L, Barragan V, DeWynter G, Montero J-L (2001) N-(tert-butoxycarbonyl)-N-[4-(dimethylazaniumylidene)-1,4-dihydropyridin-1-ylsulfonyl]azanide: a new sulfamoylating agent. Structure and reactivity toward amines. Org Lett 3:2241–2243. doi:10.1021/ol010155r

    Article  CAS  PubMed  Google Scholar 

  • Zega A, Mlinšek G, Šolmajer T, Trampuš-Bakija A, Stegnar M, Urleb U (2004) Thrombin inhibitors built on an azaphenylalanine scaffold. Bioorg Med Chem Lett 14:1563–1567. doi:10.1016/j.bmcl.2003.12.083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The presented work was financially supported by grants of the Ministero dell’Università e della Ricerca (MIUR, Italy). Authors gratefully acknowledge Dr. Soluzzo Cavalcanti for all suggestions and precious discussion about the anticoagulant activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Liguori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

726_2009_267_MOESM1_ESM.pdf

Supporting Information Available. Copy of 1H and 13C NMR spectra for compounds 2, 6, 8, 10, 12. Copy of 1H spectra for compounds 13 and 14. Copy of the 13C DEPT analysis and contour plots of the COSY and TOCSY spectra for compound 6. Copy of the contour plot of the TOCSY spectrum for dipeptide 12 (PDF 570 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Marco, R., Di Gioia, M.L., Leggio, A. et al. A new non-natural arginine-like amino acid derivative with a sulfamoyl group in the side-chain. Amino Acids 38, 691–700 (2010). https://doi.org/10.1007/s00726-009-0267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0267-2

Keywords

Navigation