Skip to main content
Log in

Orientation of Spin-Labeled Lysozyme from Chicken Egg White Immobilized on Porous Oxide Carriers

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The spectroscopy of electron paramagnetic resonance, unlike optical methods, allows observing paramagnetic molecules inside a non-paramagnetic matrix of any morphology, which makes it possible to investigate the behavior of proteins immobilized on porous carriers. In the present work the preferential orientation of lysozyme from chicken egg white, spin-labeled in position his-15, immobilized on the surface of a series of porous oxide carriers, has been defined by computer simulation of the dynamic EPR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.A. Sheldon, Adv. Synth. Catal. 349, 1289 (2007)

    Google Scholar 

  2. E. Katchalski-Katzir, D.M. Kraemer, J. Mol. Catal. - B Enzym. 10, 157 (2000)

    Google Scholar 

  3. A.M. Klibanov, Science 219(80), 722 (1983)

    ADS  Google Scholar 

  4. M. Hartmann, Chem. Mater. 17, 4577 (2005)

    ADS  Google Scholar 

  5. B.C. Dave, B. Dunn, J.S. Valentine, J.I. Zink, Anal. Chem. 66, 1120A (1120A)

    Google Scholar 

  6. O. Barbosa, R. Torres, C. Ortiz, Á. Berenguer-Murcia, R.C. Rodrigues, R. Fernandez-Lafuente, Biomacromol. 14, 2433 (2013)

    Google Scholar 

  7. K. Hernandez, R. Fernandez-Lafuente, Enzyme Microb. Technol. 48, 107 (2011)

    Google Scholar 

  8. O. Barbosa, C. Ortiz, Á. Berenguer-Murcia, R. Torres, R.C. Rodrigues, R. Fernandez-Lafuente, RSC Adv. 4, 1583 (2014)

    Google Scholar 

  9. Y. Wei, A.A. Thyparambil, R.A. Latour, Colloids Surfaces B Biointerfaces 110, 363 (2013)

    Google Scholar 

  10. A.A. Thyparambil, Y. Wei, R.A. Latour, Biointerphases 10, 019002 (2015)

    Google Scholar 

  11. M. Rabe, D. Verdes, S. Seeger, Adv. Colloid Interface Sci. 162, 87 (2011)

    Google Scholar 

  12. C. Czeslik, R. Winter, Phys. Chem. Chem. Phys. 3, 235 (2001)

    Google Scholar 

  13. S.M. Daly, T.M. Przybycien, R.D. Tilton, Langmuir 19, 3848 (2003)

    Google Scholar 

  14. G. Jackler, R. Steitz, C. Czeslik, Langmuir 18, 6565 (2002)

    Google Scholar 

  15. C. Czeslik, C. Royer, T. Hazlett, W. Mantulin, Biophys. J. 84, 2533 (2003)

    Google Scholar 

  16. B. Zhu, Y. Chen, N. Wei, Trends Biotechnol. 37, 661 (2019)

    Google Scholar 

  17. Y. Wan, D. Zhao, Chem. Rev. 107, 2821 (2007)

    Google Scholar 

  18. D. Quintanar-Guerrero, A. Ganem-Quintanar, M.G. Nava-Arzaluz, E. Piñón-Segundo, Expert Opin. Drug Deliv. 6, 485 (2009)

    Google Scholar 

  19. Y. Lvov, W. Wang, L. Zhang, R. Fakhrullin, Adv. Mater. 28, 1227 (2016)

    Google Scholar 

  20. Y. Lvov, A. Aerov, R. Fakhrullin, Adv. Colloid Interface Sci. 207, 189 (2014)

    Google Scholar 

  21. I.D. Sahu, G.A. Lorigan, Biomed. Res. Int. 2, 18 (2018)

    Google Scholar 

  22. H.S. Mchaourab, K.J. Oh, C.J. Fang, W.L. Hubbell, Biochemistry 36, 307 (1997)

    Google Scholar 

  23. Z. Guo, D. Cascio, K. Hideg, W.L. Hubbell, Protein Sci. 17, 228 (2008)

    Google Scholar 

  24. J.P. Barnes, Z. Liang, H.S. Mchaourab, J.H. Freed, W.L. Hubbell, Biophys. J. 76, 3298 (1999)

    Google Scholar 

  25. K. Jacobsen, S. Oga, W.L. Hubbell, T. Risse, Biophys. J. 88, 4351 (2005)

    Google Scholar 

  26. K. Jacobsen, T. Risse, J. Phys. Chem. B 112, 967 (2008)

    Google Scholar 

  27. Y. Pan, S. Neupane, J. Farmakes, M. Bridges, J. Froberg, J. Rao, S.Y. Qian, G. Liu, Y. Choi, Z. Yang, Nanoscale 9, 3512 (2017)

    Google Scholar 

  28. S. Neupane, K. Patnode, H. Li, K. Baryeh, G. Liu, J. Hu, B. Chen, Y. Pan, Z. Yang, A.C.S. Appl. Mater. Interfaces 11, 12133 (2019)

    Google Scholar 

  29. R.E. Canfield, J. Biol. Chem. 238, 2698 (1963)

    Google Scholar 

  30. C. Blake, D. Koenig, G. Mair, A. North, D. Phillips, V. Sarma, Nature 206, 757 (1965)

    ADS  Google Scholar 

  31. R.E. Canfield, A.K. Liu, J. Biol. Chem. 240, 1997 (1965)

    Google Scholar 

  32. D.P. Kharakoz, A.P. Sarvazyan, Biopolymers 33, 11 (1993)

    Google Scholar 

  33. Y.A. Dyakova, K.B. Ilina, P.V. Konarev, A.E. Kryukova, M.A. Marchenkova, A.E. Blagov, V.V. Volkov, Y.V. Pisarevsky, M.V. Kovalchuk, Crystallogr. Rep. 62, 364 (2017)

    ADS  Google Scholar 

  34. P. Sharma, N. Verma, P.K. Singh, S. Korpole, Sci. Rep. 6, 1 (2016)

    Google Scholar 

  35. J. Lawrence, Spin Labeling Theory and Applications (Academic Press, New York, 1976)

    Google Scholar 

  36. A.B. Shishmakov, Y.V. Mikushina, O.V. Koryakova, M.S. Valova, L.A. Petrov, S.A. Melkozerov, Russ. J. Inorg. Chem. 57, 787 (2012)

    Google Scholar 

  37. A.B. Shishmakov, M.S. Molochnikov, D.O. Antonov, O.V. Koryakova, A.S. Seleznev, L.A. Petrov, Russ. J. Appl. Chem. 86, 297 (2013)

    Google Scholar 

  38. E. Yalamaç, A. Trapani, S. Akkurt, Eng. Sci. Technol. Intl. J. 17, 2 (2014)

    Google Scholar 

  39. V.A. Osipova, A.V. Pestov, A.V. Mekhaev, A.M.A. Abuelsoad, D.P. Tambasova, D.O. Antonov, E.G. Kovaleva, Pet. Chem. 60, 597 (2020)

    Google Scholar 

  40. R.I. Artyukh, G.S. Kachalova, B.A. Samaryanov, V.P. Timofeev, Mol. Biol. 29, 87 (1995)

    Google Scholar 

  41. R.W. Wien, J.D. Morrisett, H.M. McConnell, Biochemistry 11, 3707 (1972)

    Google Scholar 

  42. A.K. Vorobiev, A.V. Bogdanov, T.S. Yankova, N.A. Chumakova, J. Phys. Chem. B 123, 5875 (2019)

    Google Scholar 

  43. A.Kh. Vorob’ev, N.A. Chumakova, in: Nitroxides: Theory, Experiment and Applications, ed. by A.I. Kokorin (InTech Publ., Rijeka, 2012), pp. 58–112

  44. D.A. Pomogailo, N.A. Chumakova, S.M. Pestov, A.K. Vorobiev, Appl. Magn. Reson. 46, 1343 (2015)

    Google Scholar 

  45. G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, Quantitative EPR (Springer Vienna, Vienna, 2010)

    Google Scholar 

  46. V.I. Krinichnyi, 2-Mm Wave Band EPR Spectroscopy of Condensed Systems (CRC Press, Florida, 2018)

    Google Scholar 

  47. M. Levitt, C. Sander, P.S. Stern, J. Mol. Biol. 181, 423 (1985)

    Google Scholar 

  48. A. Amadei, Proteins Struct. Funct. Genet. 17, 412 (1993)

    Google Scholar 

  49. D.A. Chernova, A.K. Vorobiev, J. Appl. Polym. Sci. 121, 102 (2011)

    Google Scholar 

  50. D. Brune, S. Kim, Proc. Natl. Acad. Sci. USA 90, 3835 (1993)

    ADS  Google Scholar 

  51. H. Larsericsdotter, S. Oscarsson, J. Buijs, J. Colloid Interface Sci. 237, 98 (2001)

    ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by Russian Foundation for Basic Research (RFBR) (grant 19–33-50073 mol_nr and 18–29-12129mk) and in part by M.V. Lomonosov Moscow State University Program of Development. Authors are grateful to Prof. Vladimir P. Timofeev and Dr. Yaroslav V. Tkachev (Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow) for a fruitful discussion and valuable advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis O. Antonov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, D.O., Chumakova, N.A. & Kovaleva, E.G. Orientation of Spin-Labeled Lysozyme from Chicken Egg White Immobilized on Porous Oxide Carriers. Appl Magn Reson 51, 679–690 (2020). https://doi.org/10.1007/s00723-020-01231-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01231-z

Navigation