Skip to main content
Log in

Proton Spin Relaxation in Aqueous Solutions of Self-assembling Gadolinium Endofullerenols

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The nuclear magnetic resonance (NMR)-relaxation characteristics of protons in pure aqueous and buffer solutions of highly hydroxylated endofullerenols with paramagnetic gadolinium ions at ambient temperature have been studied. These systems were thoroughly characterized by SANS and examined by NMR at various resonance frequencies: f = 2 kHz–500 MHz. In all the cases, we have discovered much higher longitudinal and transversal relaxation rates as compared to the reference salt solutions with Gd+3 ions in the same range of concentrations (0.1–10.0 mM/l). We suppose that this effect is due to the fact that the objects studied reveal well-manifested abilities to the self-assembly in acidic conditions. As a result, the transversal relaxation rate (1/T2) increases greatly, and also the longitudinal relaxation rate (1/T1) demonstrates a broad maximum at resonant frequencies f ~ 20–100 MHz that are determined by the time of fullerenol diffusive rotations. The relaxation rates, which increase linearly with fullerenol content (0.1–10.0 mM/l), testify the stable assembly. The studied features of fullerenol assembly and its strong influence on the proton relaxation make it possible to suppose good prospects of these metal–carbon structures for biomedical applications, in particular, as contrast agents in MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Nomura, S. Sakai, M. Capone, R. Arita, Sci. Adv. 1, 1500568 (2015)

    Article  ADS  Google Scholar 

  2. M.A. Shevtsov, B.P. Nikolaev, Y.Y. Marchenko, L.Y. Yakovleva, A.V. Dobrodumov, G. Török, V.T. Lebedev, Appl. Magn. Reson. 45, 303 (2014)

    Article  Google Scholar 

  3. H. Kato, Y. Kanazawa, M. Okumura, A. Taninaka, T. Yokawa, H. Shinohara, J. Am. Chem. Soc. 125, 4391 (2003)

    Article  Google Scholar 

  4. T. Zou, M. Zhen, J. Li, D. Chen, Y. Feng, R. Li, C. Wang, RSC Adv. 5, 96253 (2015)

    Article  Google Scholar 

  5. G. Xing, J. Zhang, Y. Zhao, J. Tang, B. Zhang, X. Gao, K. Ibrahim, J. Phys. Chem. B 108, 11473 (2004)

    Article  Google Scholar 

  6. S. Laus, B. Sitharaman, É. Tóth, R.D. Bolskar, L. Helm, L.J. Wilson, A.E. Merbach, J. Phys. Chem. C 111, 5633 (2007)

    Article  Google Scholar 

  7. Patent RU2558121C1, V.P. Sedov, A.A. Szhogina, Method of producing highly water-soluble fullerenols

  8. S.G. Semenov, M.E. Bedrina, A.V. Titov, J. Struct. Chem. 59, 506 (2018)

    Article  Google Scholar 

  9. V.T. Lebedev, V.V. Runov, A.A. Szhogina, M.V. Suyasova, Nanosyst. Phys. Chem. Math. 7(1), 1–7 (2016)

    Google Scholar 

  10. M. Mikawa, H. Kato, M. Okumura, M. Narazaki, Y. Kanazawa, N. Miwa, H. Shinohara, J. Bioconj. Chem. 12, 510 (2001)

    Article  Google Scholar 

  11. A.M. Panich, M. Salti, S.D. Goren, E.B. Yudina, A.E. Aleksenskii, A.Y. Vul’, A.I. Shames, J. Phys. Chem. 123, 2627 (2019). https://doi.org/10.1021/acs.jpcc.8b11655

  12. Y.A. Mondjinou, B.P. Loren, C.J. Collins, S.H. Hyun, A. Demoret, J. Skulsky, D.H. Thompson, J. Bioconj. Chem. 29, 3550 (2018). https://doi.org/10.1021/acs.bioconjchem.8b00525

  13. E.A. Suturina, K. Mason, C.F. Geraldes, N.F. Chilton, D. Parker, I. Kuprov, J. Phys. Chem. Chem. Phys. 9, 99 (2018). https://doi.org/10.1039/c8cp01332b

  14. Patent RU2659972C1, V.P. Sedov, A.A. Szhogina, M.V. Suyasova, V.A. Shilin, V.T. Lebedev. Method for producing water-soluble hydroxylated derivatives of endometallofullerenes of lanthanides

  15. A. Arrais, R. Gobetto, R. Rossetti, E. Diana, New Diamond Front. Carbon Technol. 16, 79 (2006)

    Google Scholar 

  16. T.H. Goswami, R. Singh, S. Alam, G.N. Mathur, Thermochim. Acta 419, 97 (2004)

    Article  Google Scholar 

  17. M. Newville, J. Synchrotron Radiat. 8, 322 (2001)

    Article  Google Scholar 

  18. K. Hedberg, L. Hedberg, D.S. Bethune, C.A. Brown, H.C. Dorn, R.D. Johnson, M. De Vries, Science 254, 410 (1991)

    Article  ADS  Google Scholar 

  19. L. Soderholm, P. Wurz, K.R. Lykke, D.H. Parker, F.W. Lytle, J. Phys. Chem. 96, 7153 (1992)

    Article  Google Scholar 

  20. K. Kikuchi, Y. Nakao, Y. Achiba, M. Nomura, Electrochem. Soc. 1, 1300 (1994)

    Google Scholar 

  21. H. Giefers, F. Nessel, S.I. Györy, M. Strecker, G. Wortmann, Y.S. Grushko, V.S. Kozlov, Carbon 37, 721 (1999)

    Article  Google Scholar 

  22. M. Nomura, Y. Nakao, K. Kikuchi, Y. Achiba, Phys. B 208&209, 539 (1995)

    Article  Google Scholar 

  23. D.I. Svergun, J. Appl. Crystallogr. 25, 495 (1992)

    Article  Google Scholar 

  24. D. Franke, M.V. Petoukhov, P.V. Konarev, A. Panjkovich, A. Tuukkanen, H.D.T. Mertens, D.I. Svergun, J. Appl. Crystallogr. 50(4), 1212 (2017)

    Article  Google Scholar 

  25. M.V. Suyasova, Y.V. Kul’velis, V.T. Lebedev, V.P. Sedov, Russ. J. Appl. Chem. 88, 1839 (2015)

  26. D. Kruk, J. Kowalewski, D.S. Tipikin, J.H. Freed, M. Mościcki, A. Mielczarek, M. Port, J. Chem. Phys. 134(2), 024508 (2011)

    Article  ADS  Google Scholar 

  27. V.T. Lebedev, A.A. Szhogina, M.V. Suyasova, J. Phys, Conf. Ser. 1, 012005 (2018)

    Article  Google Scholar 

  28. B. Sitharaman, R.D. Bolskar, I. Rusakova, L.J. Wilson, Nano Lett. 4, 2373 (2004)

    Article  ADS  Google Scholar 

  29. É. Tóth, R.D. Bolskar, A. Borel, G. González, L. Helm, A.E. Merbach, L.J. Wilson, J. Am. Chem. Soc. 2005(127), 799 (2005)

    Article  Google Scholar 

  30. A.S. Merbach, The chemistry of contrast agents in medical magnetic resonance imaging. Wiley (2013)

  31. J. Zhang, P.P. Fatouros, C. Shu, J. Reid, L.S. Owens, T. Cai, H.C. Dorn, Bioconj. Chem. 21, 610 (2010)

    Article  Google Scholar 

  32. P. Fatouros, M.D. Shultz, Nanomedicine 8, 1853 (2013)

    Article  Google Scholar 

  33. K.B. Ghiassi, M.M. Olmstead, A.L. Balch, Dalton Trans. 43, 7346 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Suyasova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suyasova, M.V., Lebedev, V.T., Sedov, V.P. et al. Proton Spin Relaxation in Aqueous Solutions of Self-assembling Gadolinium Endofullerenols. Appl Magn Reson 50, 1163–1175 (2019). https://doi.org/10.1007/s00723-019-01139-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01139-3

Navigation