Skip to main content
Log in

Aggregation Behavior of Monomeric Surfactants and a Gemini Cationic Surfactant by NMR and Computer Simulation Data

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Aggregation of decyltrimethylammonium bromide and cetyltrimethylammonium bromide (CTAB) in D2O has been studied. Spin–lattice relaxation time and self-diffusion coefficient of surfactant molecules were measured at concentrations below and above surfactant critical micelle concentration. The aggregation properties of conventional surfactant, CTAB, examined by nuclear magnetic resonance (NMR) and molecular dynamic (MD) simulation, were compared with the properties of double-tail analog, N,N,N′,N′-tetramethyl-N,N′dihexadecyl-1,4-butan di-ammonium di-bromide (BCTA). Both NMR and computer simulation methods suggest that micellization is a stepwise process and the pre-micellar aggregates take place in a solution at concentration below critical micelle concentration. According to MD simulation Gemini surfactant, BCTA, forms worm-like micelles, whereas CTAB, which may be considered as its “monomer”, forms only elongated micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.H. Zhao, L. Zhang, L. Zhang, S. Zhao, J.Y. Yu, Energy Fuels 24, 5048 (2010)

    Article  Google Scholar 

  2. R.G. Laughlin, The Aqueous Phase Behavior of Surfactants, 1st edn. (Academic Press, London, 1996)

    Google Scholar 

  3. M.J. Rosen, Surfactants and Interfacial Phenomena, 3rd edn. (Wiley, New Jersey, 2004)

    Book  Google Scholar 

  4. J. Mondal, M. Mahanthappa, A. Yethiraj, J. Phys. Chem. B 117, 4254 (2012)

    Article  Google Scholar 

  5. R. Wu, M. Deng, B. Kong, X. Yang, J. Phys. Chem. B 113, 15010 (2009)

    Article  Google Scholar 

  6. R. Zana, Adv. Colloid Interface Sci. 97, 205 (2002)

    Article  Google Scholar 

  7. M.S. Kamal, I.A. Hussein, A.S. Sultan, Energy Fuels 31, 7701 (2017)

    Article  Google Scholar 

  8. H.J. Niemarkt, M.C. Hütten, B.W. Kramerb, Neonatology 111, 408 (2017)

    Article  Google Scholar 

  9. B. Lindman, Colloid Polym. Sci. 294, 1687 (2016)

    Article  Google Scholar 

  10. K. Holmberg, Curr. Opin. Colloid Interface Sci. 6, 148 (2001)

    Article  Google Scholar 

  11. D.-Y. Zhu, F. Cheng, Y. Chen, S.-C. Jiang, J. Colloids and Surf A Physicochem. Eng. Aspects 397, 1 (2012)

    Article  Google Scholar 

  12. N. Chandra, V.K. Tyagi, J. Dispers. Sci. Technol. 34, 800 (2013)

    Article  Google Scholar 

  13. A. Goldszal, M. Bourrel, J. Ind. Eng. Chem. Res. 39, 2746 (2000)

    Article  Google Scholar 

  14. G.J. Hirasaki, C.A. Miller, O.G. Raney, M.K. Poindexter, D.T. Nguyen, J. Hera, J. Energy Fuels (2010). https://doi.org/10.1021/ef101087u

    Google Scholar 

  15. M.V. Popova, Y.S. Tchernyshev, D. Michel, Colloid Polym. Sci. 285, 359 (2006)

    Article  Google Scholar 

  16. A.M. Al-Sabagh, Nehal S. Ahmed, Amal M. Nassar, M.M. Gabr, Colloids Surf A Physicochem. J. Eng. Aspects 216, 9 (2003)

    Article  Google Scholar 

  17. L. Pérez, A. Pinazo, R. Pons, M.R. Infante, Adv. Colloid Interface Sci. 205, 134 (2014)

    Article  Google Scholar 

  18. M.S. Kamal, J. Surf. Deterg. 19, 223 (2016)

    Article  ADS  Google Scholar 

  19. F. Keymeulen, P. De Bernardin, A.D. Cort, K. Bartik, J. Phys. Chem. B 117, 11654 (2013)

    Article  Google Scholar 

  20. Y. Seob, L. Kyu, W. Woo, J. Colloid Int. Sci. 169, 34 (1995)

    Article  ADS  Google Scholar 

  21. X.-Y. Yang, H. Chen, G.-Z. Cheng, S.-Z. Mao, M.-L. Liu, P.-Y. Luo, Y.-R. Du, J. Colloid Polym. Sci. 286, 639 (2008)

    Article  Google Scholar 

  22. J.-J.H. Nusselder, J.B.F.N. Engberts, J. Phys. Chem. 93, 6142 (1989)

    Article  Google Scholar 

  23. O. Söderman, P. Stilbs, Prog. Nucl. Magn. Reson. Spectrosc. 26, 445 (1994)

    Article  Google Scholar 

  24. R. Zana, H. Lévy, Langmuir 13, 402 (1997)

    Article  Google Scholar 

  25. L.M. Bergström, V.M. Garamus, Langmuir 28, 9311 (2011)

    Article  Google Scholar 

  26. O. Söderman, P. Stilbs, W.S. Price, Concepts Magn. Reson. Part A 23A(2), 121 (2004)

    Google Scholar 

  27. C. Tanford, J. Phys. Chem. 76, 3020 (1972)

    Article  Google Scholar 

  28. C. Oliviero, L. Coppola, C. La Mesa, G.A. Ranieri, M. Terenzi, Colloids Surf. A Physicochem. Eng. Aspects 201, 247 (2002)

    Article  Google Scholar 

  29. L.M. Bengström, V.M. Garamus, Langmuir 28, 9311 (2012)

    Article  Google Scholar 

  30. V.I. Chizhik, Mol. Phys. 90, 653 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Popova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, M.V., Raev, D.L. Aggregation Behavior of Monomeric Surfactants and a Gemini Cationic Surfactant by NMR and Computer Simulation Data. Appl Magn Reson 49, 619–630 (2018). https://doi.org/10.1007/s00723-018-1011-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1011-4

Navigation