Skip to main content
Log in

Usage of Relative Differences of Experimental and Calculated Vicinal Constants 3JHH for Conformational Analysis of Rigid Molecules in Liquid

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Comparison of the relative differences between the experimental and calculated values of proton–proton vicinal scalar constants obtained from nuclear magnetic resonance spectra of two structurally similar organic molecules makes it possible to increase the efficiency of using Karplus relationship for experimental detection and quantitative description of the conformational distortions in molecules under investigation. Advantages and disadvantages of the proposed approach are considered on the examples of the study of two pairs of rigid steroid molecules in solution where they are in a single conformation. These steroids have potential biological activity which is determined by their structural and conformational features. There is only one structural difference in each pair of compared steroids. The influence of small modifications such as substituent variation on the molecules spatial structure was investigated by the joint use of molecular optimization methods (semi-empirical and molecular mechanic) to determine the dihedral angles and Karplus-type equation of C.A.G. Haasnoot, F.A.A.M. de Leeuw and C.A. Altona to calculate vicinal constants in ethane fragments. It was shown that the usage of relative differences of experimental and calculated vicinal constants for conformational analysis of rigid molecules eliminates systematic errors of vicinal constant calculations. Such approach allows us to detect small distortions between conformations of comparable molecules with high accuracy, which are concluded in the differences of the corresponding dihedral angles within not more than 10°–15°. The proposed approach is a more sensitive way of studying small specific features of the spatial structure of molecules in comparison with the known methods on the basis of Karplus-type equation in which the absolute values of experimental and calculated vicinal proton–proton constants are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Karplus, J. Chem. Phys. 30(1), 11–15 (1959)

    Article  ADS  Google Scholar 

  2. M. Karplus, J. Phys. Chem. 64(12), 1793–1798 (1960)

    Article  Google Scholar 

  3. M. Karplus, J. Am. Chem. Soc. 85(18), 2870–2871 (1963)

    Article  Google Scholar 

  4. D.H. Williams, N.S. Bhacca, J. Am. Chem. Soc. 86(13), 2742–2743 (1964)

    Article  Google Scholar 

  5. N.S. Bhacca, D.H. Williams, in Application of NMR Spectroscopy in Organic Chemistry. Illustrations from the Steroid Field (Holden-Day, San Francisco, 1964), pp. 49–54

  6. H. Booth, Tetrahedron Lett. 6(7), 411–416 (1965)

    Article  Google Scholar 

  7. K.G.R. Pachler, Tetrahedron Lett. 11(22), 1955–1958 (1970)

    Article  Google Scholar 

  8. K.G.R. Pachler, Tetrahedron 27(1), 187–199 (1971)

    Article  Google Scholar 

  9. K.G.R. Pachler, J. Chem. Soc. Perkin Trans. 2, 1936–1940 (1972)

    Article  Google Scholar 

  10. K.D. Kopple, G.R. Wiley, R. Tauke, Biopolymers 12(3), 627–636 (1973)

    Article  Google Scholar 

  11. C. Altona, M. Sundaralingam, J. Am. Chem. Soc. 95(7), 2333–2344 (1973)

    Article  Google Scholar 

  12. M. Barfield, I. Burfitt, D. Doddrell, J. Am. Chem. Soc. 97(10), 2631–2634 (1975)

    Article  Google Scholar 

  13. V.F. Bystrov, Prog. Nucl. Magn. Reson. Spectrosc. 10(2), 41–82 (1976)

    Article  Google Scholar 

  14. C.A.G. Haasnoot, F.A.A.M. de Leeuw, C. Altona, Tetrahedron 36(19), 2783–2792 (1980)

    Article  Google Scholar 

  15. C.A.G. Haasnoot, F.A.A.M. de Leeuw, C. Altona, Org. Magn. Reson. 15(1), 43–52 (1981)

    Article  Google Scholar 

  16. F.A.A.M. de Leeuw, C. Altona, H. Kessler, W. Bermel, A. Friedrich, G. Krack, W.E. Hull, J. Am. Chem. Soc. 105(8), 2237–2246 (1983)

    Article  Google Scholar 

  17. W.J. Colucci, S.J. Jungk, R.D. Gandour, Magn. Reson. Chem. 23(5), 335–343 (1985)

    Article  Google Scholar 

  18. L.A. Donders, F.A.A.M. Leeuw, C. Altona, Magn. Reson. Chem. 27(6), 556–563 (1989)

    Article  Google Scholar 

  19. C. Altona, J.H.W. Ippel, A.J.A. Hoekzema, C. Erkelens, M. Groesbeek, L.A. Donders, Magn. Reson. Chem. 27(6), 564–576 (1989)

    Article  Google Scholar 

  20. K. Imai, E. Ōsawa, Tetrahedron Lett. 30(32), 4251–4254 (1989)

    Article  Google Scholar 

  21. K. Imai, E. Ōsawa, Magn. Reson. Chem. 28(8), 668–674 (1990)

    Article  Google Scholar 

  22. M.L. Huggins, J. Am. Chem. Soc. 75(17), 4123–4126 (1953)

    Article  Google Scholar 

  23. J. Mullay, J. Am. Chem. Soc. 106(20), 5842–5847 (1984)

    Article  Google Scholar 

  24. J. Mullay, J. Am. Chem. Soc. 107(25), 7271–7275 (1985)

    Article  Google Scholar 

  25. M. Jaeger, R.L.E.G. Aspers, Annu. Rep. NMR Spectrosc. 77, 115–258 (2012)

    Article  Google Scholar 

  26. A.C.J. Sedee, G.M.J.B. van Henegouwen, W. Guijt, C.A.G. Haasnoot, J. Org. Chem. 50(22), 4182–4187 (1985)

    Article  Google Scholar 

  27. C.A.G. Haasnoot, J. Am. Chem. Soc. 115(4), 1460–1468 (1993)

    Article  Google Scholar 

  28. M. Barfield, W.B. Smith, J. Am. Chem. Soc. 114(5), 1574–1581 (1992)

    Article  Google Scholar 

  29. W.B. Smith, M. Barfield, Magn. Reson. Chem. 31(7), 696–697 (1993)

    Article  Google Scholar 

  30. F. Augé, J.-Y. Laronze, J.-M. Nuzillard, Magn. Reson. Chem. 41(7), 526–530 (2003)

    Article  Google Scholar 

  31. R.W. Hemingway, F.L. Tobiason, G.W. McGraw, Magn. Reson. Chem. 34(6), 424–433 (1996)

    Article  Google Scholar 

  32. A. Wu, D. Cremer, J. Phys. Chem. A 107(11), 1797–1810 (2003)

    Article  Google Scholar 

  33. P. Salvador, Annu. Rep. NMR Spectrosc. 81, 185–227 (2014)

    Article  Google Scholar 

  34. S. Masamune, P. Ma, R. E. Moore, T. Fujiyoshi, C. Jaime, E. Osawa, J. Chem. Soc. Chem. Commun., 261–263 (1986)

  35. R.H. Contreras, J.E. Peralta, Prog. NMR Spectrosc. 37(4), 321–425 (2000)

    Article  Google Scholar 

  36. T.A. Thomas, Prog. NMR Spectrosc. 30(3–4), 183–207 (1997)

    Article  ADS  Google Scholar 

  37. C.F. Tormena, Prog. NMR Spectrosc. 96, 73–88 (2016)

    Article  ADS  Google Scholar 

  38. A. Navarro-Vazquez, J.C. Cobas, F.J. Sardina, J. Casanueva, E. Diez, J. Chem. Inf. Comput. Sci. 44(5), 1680–1685 (2004)

    Article  Google Scholar 

  39. M. Eberstadt, G. Gemmecker, D.F. Mierke, H. Kessler, Angew. Chem. Int. Ed. Eng. 34(16), 1671–1695 (1995)

    Article  Google Scholar 

  40. D.A. Cheshkov, D.O. Synitsyn, K.F. Sheberstov, V.A. Chertkov, J. Magn. Reson. 272, 10–19 (2016)

    Article  ADS  Google Scholar 

  41. A. Garza-Garcia, G. Ponzanelli-Velazques, J. Magn. Reson. 148(1), 214–219 (2002)

    Article  ADS  Google Scholar 

  42. N.L. Alinger, Adv. Phys. Org. Chem. 13, 1–79 (1976)

    Google Scholar 

  43. P. Aue, E. Bartholdi, R.R. Ernst, J. Chem. Phys. 64(5), 2229–2246 (1976)

    Article  ADS  Google Scholar 

  44. A.E. Derome, M.P. Williamson, J. Magn. Reson. 88(1), 177–185 (1990)

    ADS  Google Scholar 

  45. G. Bodenhausen, D.J. Ruben, Chem. Phys. Lett. 69(1), 185–189 (1980)

    Article  ADS  Google Scholar 

  46. H. Kessler, C. Griesinger, J. Zarbock, H.R. Loosli, J. Magn. Reson. 57(2), 331–336 (1984)

    ADS  Google Scholar 

  47. A. Kumar, Magn. Reson. Chem. 41(S1), S26–S32 (2003)

    Article  Google Scholar 

  48. K. Nagayama, K. Wüthrich, R.R. Ernst, J. Magn. Reson. 31(1), 133–148 (1978)

    ADS  Google Scholar 

  49. M.S. Egorov, A.D. Zorina, L.V. Balikina, S.I. Selivanov, A.G. Shavva, In: Russian Journal Vestniк SPbGU (Messenger of the St. Petersburg State University), Ser. 4 (Physics, chemistry), Issue 4, pp. 99–105 (2000) (in Russian)

  50. S.I. Selivanov, M.S. Egorov, A.G. Shavva, in Proceedings of 30th Congress AMPERE “Magnetic Resonance and Related Phenomena”, Lisbon, p. 121 (2000)

  51. S.I. Selivanov, A.G. Shavva, Russ. J. Bioorg. Chem. 28(3), 194–208 (2002)

    Article  Google Scholar 

  52. A.G. Shavva, G.L. Starova, S.I. Selivanov, S.N. Morozkina, Chem. Heterocycl Compd. 44(2), 148–152 (2008)

    Article  Google Scholar 

  53. S.N. Morozkina, A.S. Chentsova, NYu. Hasan, S.I. Selivanov, A.L. Shavarda, A.G. Shavva, Chem. Heterocycl. Compd. 45(9), 1144–1146 (2009)

    Article  Google Scholar 

  54. J.S. Lomas, Magn. Reson. Chem. 52(1), 87–97 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to the staff of the resource center for “Magnetic resonance methods of research” of St.-Petersburg state university Sergei Smirnov and Alexander Ivanov for preparing, conducting and result discussion of some NMR experiments. I thank the members of prof. A.G. Shavvaʼs group Maxim Egorov, Svetlana Tsogoeva, Alla Zorina and Sofiya Nikol’skaya for steroids synthesis and possibility of using them as model compounds in this study. I also thank Ivan Podkoritov for stimulating discussion on some problems of NMR application in conformational analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav I. Selivanov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selivanov, S.I. Usage of Relative Differences of Experimental and Calculated Vicinal Constants 3JHH for Conformational Analysis of Rigid Molecules in Liquid. Appl Magn Reson 49, 563–578 (2018). https://doi.org/10.1007/s00723-018-1003-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1003-4

Navigation