Skip to main content
Log in

NMR Diffusion and Relaxation for Monitoring of Degradation in Motor Oils

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Different nuclear magnetic resonance (NMR) methods such as spectroscopy, diffusometry and relaxometry are applied with the aim to monitor motor oil degradation. Chemical degradation is detected by 1H NMR spectroscopy. With respect to quality control, low-field NMR is the established technique, which mostly uses relaxation and diffusion. Conventional methods such as mono-exponential data modeling lead to inadequate description of relaxation and diffusion data of complex fluids like motor oils. Inverse Laplace transform has difficulties in quantification, comparability and interpretation. Therefore, various data processing approaches are investigated to obtain the physico-chemically and numerically most correct description of the data. The gamma distribution model for diffusion and also for T 1 and T 2 relaxation data numerically describes the data with high accuracy. Three differently degraded motor oils were exemplarily investigated with regard to spectroscopic, relaxation and diffusion parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Kupareva, P. Mäki-Arvela, H. Grénman, K. Eränen, R. Sjöholm, M. Reunanen, D.Y. Murzin, Energy Fuels 27, 27 (2013)

    Article  Google Scholar 

  2. E. Förster, J. Becker, F. Dalitz, B. Görling, B. Luy, H. Nirschl, G. Guthausen, Energy Fuels 29, 7204 (2015)

    Article  Google Scholar 

  3. B.K. Sharma, A. Adhvaryu, J.M. Perez, S.Z. Erhan, Fuel Process. Technol. 89, 984 (2008)

    Article  Google Scholar 

  4. C.R. Kaiser, J.L. Borges, A.R. dos Santos, D.A. Azevedo, L.A. D’Avila, Fuel 89, 99 (2010)

    Article  Google Scholar 

  5. B.K. Sharma, A.J. Stipanovic, Ind. Eng. Chem. Res. 41, 4889 (2002)

    Article  Google Scholar 

  6. A. Olejniczak, A.G. Chostenko, J. Fall, Fuel 89, 1150 (2010)

    Article  Google Scholar 

  7. F. Owrang, H. Mattsson, J. Olsson, J. Pedersen, Thermochim. Acta 413, 241 (2004)

    Article  Google Scholar 

  8. L.R. Rudnick, Lubricant Additives: Chemistry and Applications, 2nd edn. (CRC Press, Boca Raton, 2009), p. xvi, 777

    Book  Google Scholar 

  9. T. Mang, W. Dresel, Lubricants and Lubrications (Wiley-VCH, Weinheim, 2001), p. xxxix, 759

  10. F.R. van de Voort, J. Sedman, R. Cocciardi, S. Juneau, Talanta 72, 289 (2007)

    Article  Google Scholar 

  11. E. Dominguez-Rosado, J. Pichtel, Proc. Indiana Acad. Sci. 112, 109 (2003)

    Google Scholar 

  12. J. Zięba-Palus, P. Kościelniak, M. Łącki, Forensic Sci. Int. 122, 35 (2001)

    Article  Google Scholar 

  13. J. Vanhanen, M. Rinkio, J. Aumanen, J. Korppi-Tommola, E. Kolehmainen, T. Kerkkanen, P. Torma, Appl. Opt. 43, 4718 (2004)

    Article  ADS  Google Scholar 

  14. R. Meusinger, Fuel 75, 1235 (1996)

    Article  Google Scholar 

  15. G. Sikora, A. Miszczak, Diffusion and defect data Pt. B. Solid State Phenomena 199, 182 (2013)

    Article  Google Scholar 

  16. M. Röding, D. Bernin, J. Jonasson, A. Sarkka, D. Topgaard, M. Rudemo, M. Nyden, J. Magn. Reson. 222, 105 (2012)

    Article  ADS  Google Scholar 

  17. E.O. Stejskal, J.E. Tanner, J. Chem. Phys. 42, 288 (1965)

    Article  ADS  Google Scholar 

  18. Y.Q. Song, L. Venkataramanan, L. Burcaw, J. Chem. Phys. 122, 104104 (2005)

    Article  ADS  Google Scholar 

  19. P.T. Callaghan, S. Godefroy, B.N. Ryland, J. Magn. Reson. 162, 320 (2003)

    Article  ADS  Google Scholar 

  20. R. Bernewitz, F. Dalitz, K. Köhler, H.P. Schuchmann, G. Guthausen, Micropor. Mesopor. Mat. 178, 69 (2013)

    Article  Google Scholar 

  21. R. Bernewitz, X. Guan, G. Guthausen, F. Wolf, H.P. Schuchmann, in Magnetic Resonance in Food Science: An Exciting Future, ed. by J.P. Renou, P.S. Belton, G.A. Webb (RSC Publishing Cambridge, Clermont-Ferrant, 2011), pp. 39–46

    Google Scholar 

  22. M. Ballari, F. Bonetto, E. Anoardo, J. Phys. D Appl. Phys. 38, 3746 (2005)

    Article  ADS  Google Scholar 

  23. P.A. Willermet, Tribol. Lett. 5, 41 (1998)

    Article  Google Scholar 

  24. S.K. Samanta, O.V. Singh, A. Jain, Trends Biotechnol. 20, 6 (2002)

    Article  Google Scholar 

  25. R. Kimmich, NMR: Tomography Diffusometry Relaxometry (Springer Verlag, Berlin, 1997)

    Book  Google Scholar 

Download references

Acknowledgments

We are indebted to P. Galvosas (University of Wellington) and the Wellington group for access to the Inverse Laplace transform (ILT) implementation. The DFG is gratefully acknowledged for providing financial support for the joint instrumental facility center Pro2NMR of KIT and RWTH Aachen. Jan Küstner is thanked for performing the measurements at 20 MHz and Sarah Lüken for the measurements at 400 MHz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Förster.

Ethics declarations

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Förster, E., Nirschl, H. & Guthausen, G. NMR Diffusion and Relaxation for Monitoring of Degradation in Motor Oils. Appl Magn Reson 48, 51–65 (2017). https://doi.org/10.1007/s00723-016-0842-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0842-0

Keywords

Navigation