Skip to main content
Log in

Online NMR Flowing Fluid Measurements

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Online nuclear magnetic resonance (NMR) is an efficient fluid detection method for fluid flowing measurement. In our previous work, the velocity effects on the motion NMR measurement were studied and the velocity correction method was proposed. However, the flow state effects on NMR measurement is more complicated than motion velocity effects. Thus, the influence of flow state on NMR measurement is investigated. A multi-functional low-field and online NMR fluid analysis system is developed to realize the rapid measurement of one-dimensional and two-dimensional NMR relaxation times of fluids under slow laminar flow state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.R. Coats, L.Z. Xiao, M.G. Prammer, NMR Logging Principles and Applications[M] (Gulf Professional Publishing, Houston, 1999)

    Google Scholar 

  2. F. Casanova, J. Perlo, B. Blümich, Single-Sided NMR (Springer, New York, 2011)

    Book  Google Scholar 

  3. G.A. Matzkanin, in nondestructive characterization of materials. ed. by P. Holler, V. Hauck, C.O. Rund, R.E. Green (Springer, Berlin, 1989)

  4. J.R. Suryan,  Proc. Indian Acad. Sci. Sect. A 33, 107–111 (1951)

    Google Scholar 

  5. A. Caprihan, E. Fukushima,  Phys. Rep. 198, 195–235 (1990)

    Article  ADS  Google Scholar 

  6. J.R. Singer,  Science 130(3389), 1652–1653 (2013)

    Article  ADS  Google Scholar 

  7. F. Deng, L.Z. Xiao, H.B. Liu, T.L. An, M.Y. Wang, Z.F. Zhang, W. Xu, J.J. Cheng, Q.M. Xie, V. Anferov, Appl. Magn. Reson. 44, 1053–1065 (2013)

    Article  Google Scholar 

  8. E.C. Bingham, Fluidity and Plasticity (McGraw-Hill Book Co., New York 1922)

  9. N. Casson,  in Rheolgy of Gisperse Systems, ed. by C.C. Mill (Pergamon Press, London, 1959), p. 84

    Google Scholar 

  10. W.H. Herschel, R. Bulkley, Proc. ASTM 26(II), 621–633 (1926)

    Google Scholar 

  11. R.E. Robertson, Soc. Pet. Eng. J. 16(1), 31–36 (1976)

    Article  Google Scholar 

  12. G.R. Coats, L.Z. Xiao, M.G. Prammer, NMR Logging Principles and Applications [M] (Gulf Professional Publishing, Houston, 1999)

    Google Scholar 

  13. M.G. Prammer, J. Bouton, P. Masak. Magnetic resonance fluid analysis apparatus and method. US, 20020140425A1[P], 2002-10-03

  14. B.S. Wu, L.Z. Xiao, X. Li, H.J. Yu, T.L. An, Pet. Sci. 9(1), 38–45 (2012)

    Article  Google Scholar 

  15. H.J. Yu, L.Z. Xiao, X. Li, H.B. Liu, B.X. Guo, S. Anferov, V. Anferov, in 2011 IEEE International Conference on Signal Processing, Communication and computing, ICSPCC 2011. 6061656

  16. F. Deng, L.Z. Xiao, W.L. Chen, H.B. Liu, G.Z. Liao, M.Y. Wang, Q.M. Xie, J. Magn. Reson. 247, 1–8 (2014)

    Article  ADS  Google Scholar 

  17. F. Deng, L.Z. Xiao, G.Z. Liao, F.R. Zong, W.L. Chen, Appl. Magn. Reson. 45, 179–192 (2014)

    Article  Google Scholar 

  18. Y.Q. Song, L. Venkataramanan, M.D. Hürlimann et al., T 1T 2 correlation spectra obtained using a fast two-dimensional laplace inversion. J. Magn. Reson. 154, 261–268 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (2016ZX05031-001) and National Scientific Instrument Development Project (21427812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Deng.

Appendix: The Flow Velocity Distributions in Circular Tube Under Different Flow Patterns

Appendix: The Flow Velocity Distributions in Circular Tube Under Different Flow Patterns

  1. (1)

    Bingham model [8].

Bingham mode velocity distribution function v(r)b:

$$v(r)_{\text{b}} = \left\{ \begin{aligned} \frac{{\Delta P_{\text{b}} }}{{4\eta_{\text{p}} L_{\text{A}} }}(R - r)^{2} ,r \le r_{m} \hfill \\ \frac{{\Delta P_{\text{b}} }}{{4\eta_{\text{p}} L_{\text{A}} }}[(R - r_{m} )^{2} - (r - r_{m} )^{2} ],r > r_{m} \hfill \\ \end{aligned} \right\},$$
(8)

where △P b is the Bingham mode fluid pressure difference at both sides of the pipe in the detection range:

$$\Delta P_{\text{b}} = \frac{{8\eta_{\text{p}} L_{\text{A}} u}}{{R^{2} }} + \frac{{8\tau_{0} L_{\text{A}} }}{3R},$$
(9)

L A is the length of antenna, R is the diameter of the sample tube, η p is the plastic viscosity of Bingham mode fluid:

$$\eta_{\text{p}} = 300\frac{{\theta_{2} - \theta_{1} }}{{N_{2} - N_{1} }},$$
(10)

θ 1, θ 2 represent the rheological coefficients is in rotary viscometer’s rotor with rotation rate N 1, N 2, respectively, τ 0 is the yield value:

$$\tau_{0} = \frac{{K_{\tau } (\theta_{1} N_{2} - \theta_{2} N_{1} )}}{{B_{\text{b}} (N_{2} - N_{1} )}},$$
(11)

the constant K τ is determined by rotary viscometer inner cylinder size and the characteristics of the spring, B b is the Bingham fluid correction coefficient:

$$B_{\text{b}} = \frac{{2R_{0}^{2} }}{{R_{0}^{2} - R_{i}^{2} }}\ln \frac{{R_{0} }}{{R_{i} }},$$
(12)

R 0, R i represent the rotary viscometer’s outer and inner tube diameter, the flow core radius:

$$r_{m} = \frac{{2L_{\text{A}} \tau_{0} }}{\Delta P}.$$
(13)
  1. (2)

    Ostwald-de Waele power law model.

Power law mode velocity distribution function v(r)p:

$$v(r)_{\text{p}} = \frac{n}{n + 1}\left( {\frac{{\Delta p_{\text{p}} }}{{2KL_{\text{A}} }}} \right)^{{\frac{1}{n}}} \left( {R^{{\frac{n + 1}{n}}} - r^{{\frac{n + 1}{n}}} } \right),$$
(14)

where △P p is the Power law mode fluid pressure difference at both sides of the pipe in the detection range:

$$\Delta P_{\text{p}} = \frac{2KA}{R}\left( {\frac{3n + 1}{4n}} \right)^{n} \left( {\frac{4u}{R}} \right)^{n} ,$$
(15)

n is the liquidity index:

$$n = \frac{{\lg (\theta_{2} /\theta_{1} )}}{{{ \lg }(N_{2} /N_{1} )}},$$
(16)

K is the viscosity coefficient:

$$K = \frac{{0.511\theta_{600} }}{{(1022B_{\text{p}} )^{n} }},$$
(17)

B p is Power law mode fluid correction coefficient:

$$B_{\text{p}} = \frac{{(R_{i} /R_{0} )^{2} - 1}}{{n[(R_{i} /R_{0} )^{2/n} - 1]}}.$$
(18)
  1. (3)

    Casson model [9].

Casson mode velocity distribution function v(r)c:

$$v(r)_{c} = \frac{1}{{\eta_{k} }}\left[ {\frac{{\Delta P_{\text{c}} }}{{4L_{\text{A}} }}(R^{2} - r^{2} ) - \frac{4}{3}\tau_{\text{c}}^{0.5} \left( {\frac{{\Delta P_{\text{c}} }}{{2L_{\text{A}} }}} \right)^{0.5} (R^{1.5} - r^{1.5} ) + \tau_{\text{c}} (R - r)} \right],$$
(19)

where △P c is the Casson mode fluid pressure difference at both sides of the pipe in the detection range:

$$\Delta P_{\text{c}} = \left[ {\frac{2A}{R}\left( {\frac{{4\eta_{k} u}}{R} - \frac{4}{147}\tau_{\text{c}} } \right)^{2} + \frac{8}{7}\tau_{\text{c}}^{0.5} } \right]^{2} ,$$
(20)

η k is the plastic viscosity of Casson mode fluid:

$$\eta_{k} = \left[ {\frac{{\sqrt {K_{\tau } } (\sqrt {\theta_{2} } - \sqrt {\theta_{1} } )}}{{\sqrt {K_{\gamma } } (\sqrt {N_{2} } - \sqrt {N_{1} } )}}} \right]^{2} ,$$
(21)

K γ according to the rotary viscometer’s outer and inner tube diameter, B c is Casson mode fluid correction coefficient:

$$B_{\text{c}} = 2\frac{{R_{0} }}{{R_{0} + R_{i} }},$$
(22)

τ c is the Casson yield value:

$$\tau_{\text{c}} = \left[ {\frac{{\sqrt {K_{\tau } } (\sqrt {\theta_{1} N_{2} } - \sqrt {\theta_{2} N_{1} } )}}{{B_{\text{c}} (\sqrt {N_{2} } - \sqrt {N_{1} } )}}} \right]^{2} .$$
(23)
  1. (4)

    Herschel–Bulkley model [10]

H-B mode velocity distribution function v(r)h:

$$v(r) = \frac{n}{n + 1}\left( {\frac{{\Delta P_{\text{h}} }}{2KA}} \right)^{{\frac{1}{n}}} [(R - r_{m} )^{{\frac{n + 1}{n}}} - (r - r_{m} )^{{\frac{n + 1}{n}}} ],$$
(24)

make the coefficients a = θ 600 − θ 300, b = θ 6 − θ 3, a′ = θ 300 + θ 6, b′ = θ 600 + θ 3, c = θ 600 × θ 3, d = θ 300 × θ 6, here θ 3, θ 300, θ 600 represent the rheological coefficients is in rotary viscometer’s rotor with rotation rate N 3 = 3 r/min, N 300 = 300 r/min and N 600 = 600 r/min, respectively, △P h is the H-B mode fluid pressure difference at both sides of the pipe in the detection range:

$$\Delta P_{\text{h}} = \frac{{2KL_{\text{A}} }}{R}\left( {\frac{3n + 1}{4n}} \right)^{n} \left( {\frac{4u}{R}} \right)^{n} + \left( {\frac{3n + 1}{2n + 1}} \right)\frac{{2\tau_{0} L_{\text{A}} }}{R},$$
(25)

yield value τ 0:

$$\tau_{0} = 0.511\frac{{\theta_{600} \theta_{3} - \theta_{x}^{2} }}{{C_{1} (\theta_{600} + \theta_{3} - 2\theta_{x}^{{}} )}},$$
(26)

θ x  = τ x /0.511, the coefficient C 1:

$$C_{1} = \frac{1}{1 - n}\frac{{1 - (R_{i} /R_{0} )^{2/n - 2} }}{{1 - (R_{i} /R_{0} )^{2/n} }},$$
(27)

n is the liquidity index:

$$n = \frac{{\lg [(\theta_{600} - \theta_{x} )/(\theta_{x} - \theta_{3} )]}}{{\lg (N_{600} /N_{3} )}},$$
(28)

K is the viscosity coefficient:

$$K = \frac{1}{{C_{2} }}\frac{{(\theta_{600} - \theta_{3} )}}{{(N_{600}^{n} - N_{3}^{n} )}},$$
(29)

coefficients C 2:

$$C_{2} = \left\{ {\frac{0.20944}{{n[1 - (R_{i} /R_{0} )^{2/n} ]}}} \right\}^{n} ,$$
(30)

the flow core radius r m :

$$r_{m} = \frac{{2A\tau_{0} }}{{\Delta P_{\text{h}} }}.$$
(31)
  1. (5)

    Robertson–Stiff model [11]

R-S mode velocity distribution function v(r)l:

$$v(r)_{\text{l}} = \frac{{B^{{\prime }} }}{{B^{{\prime }} + 1}}\left( {\frac{{\Delta P_{l} }}{{2A^{{\prime }} L_{\text{A}} }}} \right)^{{\frac{1}{{B^{{\prime }} }}}} (R^{{\frac{{B^{{\prime }} + 1}}{{B^{{\prime }} }}}} - r^{{\frac{{B^{{\prime }} + 1}}{{B^{{\prime }} }}}} ) - C^{{\prime }} (R - r).$$
(32)

where, △P l is the R-S mode fluid pressure difference at both sides of the pipe in the detection range:

$$\Delta P_{\text{l}} = \frac{{2A^{{\prime }} A}}{R}\left[ {\frac{3B + 1}{{B^{{\prime }} R}}\left( {u + \frac{{C^{{\prime }} R}}{3}} \right)} \right]^{{B^{{\prime }} }} ,$$
(33)

the viscosity coefficients A′:

$$A^{{\prime }} = 0.511\left[ {\frac{{B^{{\prime }} (\theta_{600}^{{1/B^{{\prime }} }} - \theta_{x}^{{1/B^{{\prime }} }} )(1 - 0.93646^{{2/B^{{\prime }} }} )}}{{0.20944(600 - N_{x} )}}} \right]^{{B^{{\prime }} }} ,$$
(34)

the liquidity index B′:

$$B^{{\prime }} = \frac{{\lg \left( {\frac{{\theta_{600} }}{{\theta_{x} }}} \right)}}{{\lg \left( {\frac{{600 - N_{x} }}{{N_{x} - 3}}} \right)}},$$
(35)

the shear rate correction value C′:

$$C^{{\prime }} = \frac{{B^{{\prime }} \left( {\frac{{0.511\theta_{600} }}{A}} \right)^{{1/B^{{\prime }} }} (1 - 0.93646^{{2/B^{{\prime }} }} ) - 125.664}}{0.13128672},$$
(36)

N x according to the θ x , N 1 and N 2:

$$N_{x} = N_{1} + \frac{{\tau_{x} - \tau_{1} }}{{\tau_{2} - \tau_{1} }}(N_{2} - N_{1} ),$$
(37)

R-S yield value τ x :

$$\tau_{x} = 0.511\sqrt {\theta_{600} \theta_{3} } .$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, F., Xiao, L., Wang, M. et al. Online NMR Flowing Fluid Measurements. Appl Magn Reson 47, 1239–1253 (2016). https://doi.org/10.1007/s00723-016-0832-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0832-2

Keywords

Navigation