Skip to main content
Log in

In Situ EPR Detection of Reactive Oxygen Species in Adherent Cells Using Polylysine-Coated Glass Plate

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In conventional electron paramagnetic resonance (EPR) experiments, it is a common procedure to use a cell suspension after detachment to measure reactive oxygen species (ROS) generated in the cell. However, to elucidate redox signaling transduction between the cells, the sample should be under cell culture conditions. Here, we propose an in situ EPR detection methodology of ROS produced in adherent cells. A quartz glass plate was coated with poly-l-lysine (PLL) to improve the adhesion efficiency of cultured cells. Using mouse fibroblasts and human malignant epithelial cells (HeLa) on the glass sheet (approximately 6.5 × 104 adherent cells per sheet), remarkable increases in the relative EPR signal intensities of spin adducts related to superoxide radicals were observed 1 h after addition of a redox-active compound (pyocyanin) and a spin trap to the culture medium. There was no disturbing effect on the EPR signals with the PLL-coated glass plate alone. The intensity of EPR signals in HeLa cells without exogenous pyocyanin was statistically significantly higher than that of the control, implying intrinsically larger amounts of ROS in cancer cells than those in non-malignant ones. Moreover, an optically transparent holder for supporting the cell-adhered glass substrate enabled both EPR detection of ROS and microscopic observation, where more than 88 % of cell viability was maintained. These findings demonstrated that the proposed in situ EPR methodology would be useful for measuring ROS generated under cell culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Valko, D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, J. Telser, Int. J. Biochem. Cell Biol. 39, 44 (2007)

    Article  Google Scholar 

  2. S. Reuter, S.C. Gupta, M.M. Chaturvedi, B.B. Aggarwal, Free Radical. Biol. Med. 49, 1603 (2010)

    Article  Google Scholar 

  3. K. Brieger, S. Schiavone, F.J. Miller Jr, K.H. Krause, Swiss Med. Wkly. 142, w13659 (2012)

    Google Scholar 

  4. T. Finkel, Curr. Opin. Cell Biol. 10, 248 (1998)

    Article  Google Scholar 

  5. M. Stańczyk, J. Gromadzińska, W. Wasowicz, Int. J. Occup. Med. Environ. Health 18, 15 (2005)

    Google Scholar 

  6. Z. Duracková, Physiol. Res. 59, 459 (2010)

    Google Scholar 

  7. T. Finkel, J. Cell Biol. 194, 7 (2011)

    Article  Google Scholar 

  8. A. Rahal, A. Kumar, V. Singh, B. Yadav, R. Tiwari, S. Chakraborty, K. Dhama, Biomed. Res. Int. 2014, 761264 (2014)

    Article  Google Scholar 

  9. M.L. Circu, T.Y. Aw, Free Radical. Biol. Med. 48, 749 (2010)

    Article  Google Scholar 

  10. H. Utsumi, K. Yamada, Arch. Biochem. Biophys. 416, 1 (2003)

    Article  Google Scholar 

  11. K. Takeshita, T. Ozawa, J. Radiat. Res. 45, 373 (2004)

    Article  Google Scholar 

  12. M. Kohno, J. Clin. Biochem. Nutr. 47, 1 (2010)

    Article  Google Scholar 

  13. C.S. Shin, C.R. Dunnam, P.P. Borbat, B. Dzikovski, E.D. Barth, H.J. Halpern, J.H. Freed, Nanosci. Nanotechnol. Lett. 3, 561 (2011)

    Article  Google Scholar 

  14. S.S. Eaton, G.R. Eaton, J. Magn. Reson. 223, 151 (2012)

    Article  ADS  Google Scholar 

  15. C.L. Hawkins, M.J. Davies, Biochim. Biophys. Acta 1840, 708 (2014)

    Article  Google Scholar 

  16. H.M. Swartz, EPR studies of cells and tissues, ed. by G.R. Eaton, S.S. Eaton, K.M. Salikhov (World Scientific Publishing, Singapore, 1998), p. 451

  17. W.K. Subczynski, H.M. Swartz, EPR oximetry in biological and model samples, ed. by S.R. Eaton, G.R. Eaton, L.J. Berliner (Kluwer Academic Publishers, New York, 2005), p. 229

  18. N. Khan, C.M. Wilmot, G.M. Rosen, E. Demidenko, J. Sun, J. Joseph, J. O’Hara, B. Kalyanaraman, H.M. Swartz, Free Radical. Biol. Med. 34, 1473 (2003)

    Article  Google Scholar 

  19. H. Shi, G. Timmins, M. Monske, A. Burdick, B. Kalyanaraman, Y. Liu, J.L. Clément, S. Burchiel, K.J. Liu, Arch. Biochem. Biophys. 437, 59 (2005)

    Article  Google Scholar 

  20. K. Saito, M. Takahashi, M. Kamibayashi, T. Ozawa, M. Kohno, Free Radical. Res. 43, 668 (2009)

    Article  Google Scholar 

  21. A.V. Kuznetsov, I. Kehrer, A.V. Kozlov, M. Haller, H. Redl, M. Hermann, M. Grimm, J. Troppmair, Anal. Bioanal. Chem. 400, 2383 (2011)

    Article  Google Scholar 

  22. T. Tanigawa, Y. Kotake, M. Tanigawa, L.A. Reinke, Free Radical. Res. 22, 361 (1995)

    Article  Google Scholar 

  23. P. Danhier, T. Copetti, G. De Preter, P. Leveque, O. Feron, B.F. Jordan, P. Sonveaux, B. Gallez, PLoS ONE 8, e53324 (2013)

    Article  ADS  Google Scholar 

  24. H. Nakagawa, T. Moritake, K. Tsuboi, N. Ikota, T. Ozawa, FEBS Lett. 471, 187 (2000)

    Article  Google Scholar 

  25. K. Osterloh, U. Ewert, A.R. Pries, Am. J. Physiol. Heart Circ. Physiol. 283, H398 (2002)

    Article  Google Scholar 

  26. G.A. Truskey, T.L. Proulx, Biomaterials 14, 243 (1993)

    Article  Google Scholar 

  27. A. Yamamoto, S. Mishima, N. Maruyama, M. Sumita, J. Biomed. Mater. Res. 50, 114 (2000)

    Article  Google Scholar 

  28. P.R. Gardner, Arch. Biochem. Biophys. 333, 267 (1996)

    Article  ADS  Google Scholar 

  29. Y.Q. O’Malley, K.J. Reszka, D.R. Spitz, G.M. Denning, B.E. Britigan, Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L94 (2004)

    Article  Google Scholar 

  30. M. Muller, Free Radical. Biol. Med. 33, 1527 (2002)

    Article  Google Scholar 

  31. G.M. Edelman, Proc. Natl. Acad. Sci. USA. 81, 1460 (1984)

    Article  ADS  Google Scholar 

  32. P.B. van Wachem, T. Beugeling, J. Feijen, A. Bantjes, J.P. Detmers, W.G. van Aken, Biomaterials 6, 403 (1985)

    Article  Google Scholar 

  33. M. Lampin, R. Warocquier-Clérout, C. Legris, M. Degrange, M.F. Sigot-Luizard, J. Biomed. Mater. Res. 36, 99 (1997)

    Article  Google Scholar 

  34. J.L. Dewez, J.B. Lhoest, E. Detrait, V. Berger, C.C. Dupont-Gillain, L.M. Vincent, Y.J. Schneider, P. Bertrand, P.G. Rouxhet, Biomaterials 19, 1441 (1998)

    Article  Google Scholar 

  35. P. Kingshott, G. Andersson, S.L. McArthur, H.J. Griesser, Curr. Opin. Chem. Biol. 15, 667 (2011)

    Article  Google Scholar 

  36. D. Mazia, G. Schatten, W. Sale, J. Cell Biol. 66, 198 (1975)

    Article  Google Scholar 

  37. E. Finkelstein, G.M. Rosen, E.J. Rauckman, Mol. Pharmacol. 21, 262 (1982)

    Google Scholar 

  38. T.P. Szatrowski, C.F. Nathan, Cancer Res. 51, 794 (1991)

    Google Scholar 

  39. S. Toyokuni, K. Okamoto, J. Yodoi, H. Hiai, FEBS Lett. 358, 1 (1995)

    Article  Google Scholar 

  40. D. Trachootham, J. Alexandre, P. Huang, Nat. Rev. Drug Discov. 8, 579 (2009)

    Article  Google Scholar 

  41. L. Raj, T. Ide, A.U. Gurkar, M. Foley, M. Schenone, X. Li, N.J. Tolliday, T.R. Golub, S.A. Carr, A.F. Shamji, A.M. Stern, A. Mandinova, S.L. Schreiber, S.W. Lee, Nature 475, 231 (2011)

    Article  Google Scholar 

  42. X. Sun, M. Ai, Y. Wang, S. Shen, Y. Gu, Y. Jin, Z. Zhou, Y. Long, Q. Yu, J. Biol. Chem. 288, 8826 (2013)

    Article  Google Scholar 

  43. C. Zhu, W. Hu, H. Wu, X. Hu, Sci. Rep. 4, 5029 (2014)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Ando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, T., Yonamoto, Y. In Situ EPR Detection of Reactive Oxygen Species in Adherent Cells Using Polylysine-Coated Glass Plate. Appl Magn Reson 46, 977–986 (2015). https://doi.org/10.1007/s00723-015-0688-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0688-x

Keywords

Navigation