Skip to main content

Advertisement

Log in

The Aggregation Potential of the 1–15- and 1–16-Fragments of the Amyloid β Peptide and Their Influence on the Aggregation of Aβ40

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The aggregation of amyloid β (Aβ) peptide is important in Alzheimer’s disease. Shorter Aβ fragments may reduce Aβ’s cytotoxicity and are used in diagnostics. The aggregation of Aβ16 is controversial; Liu et al. (J. Neurosci. Res. 75:162–171, 2004) and Liao et al. (FEBS Lett. 581:1161–1165, 2007) find that Aβ16 does not aggregate and reduces Aβ’s cytotoxicity, Du et al. (J. Alzheimer’s Dis. 27:401–413, 2011) reports that Aβ16 aggregates and that Aβ16 oligomers are toxic to cells. Here the aggregation potential of two shorter fragments, Aβ15 and Aβ16, and their influence on Aβ40 is measured by electron paramagnetic resonance (EPR) spectroscopy and the ThioT fluorescence assay (ThioT). Continuous-wave, 9 GHz EPR measurements and ThioT results reveal that neither Aβ15 nor Aβ16 aggregate by themselves and that they do not affect Aβ40 aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Chopra, S. Misra, A. Kuhad, Expert Opin. Ther. Targets 15, 535–555 (2011)

    Article  Google Scholar 

  2. R. Jakob-Roetne, H. Jacobsen, Angew. Chem. Int. Ed. Engl. 48, 3030–3059 (2009)

    Article  Google Scholar 

  3. F. Panza, V. Solfrizzi, V. Frisardi, C. Capurso, A. D’Introno, A.M. Colacicco, G. Vendemiale, A. Capurso, B.P. Imbimbo, Drugs Aging 26, 537–555 (2009)

    Article  Google Scholar 

  4. D.J. Selkoe, Ann. Intern. Med. 140, 627–638 (2004)

    Article  Google Scholar 

  5. D.J. Selkoe, Neuron 6, 487–498 (1991)

    Article  Google Scholar 

  6. E. Portelius, G. Brinkmalm, A. Tran, U. Andreasson, H. Zetterberg, A. Westman-Brinkmalm, K. Blennow, A. Ohrfelt, Exp. Neurol. 223, 351–358 (2010)

    Article  Google Scholar 

  7. E. Portelius, N. Mattsson, U. Andreasson, K. Blennow, H. Zetterberg, Curr. Pharm. Des. 17, 2594–2602 (2011)

    Article  Google Scholar 

  8. A. Awasthi, Y. Matsunaga, T. Yamada, Exp. Neurol. 196, 282–289 (2005)

    Article  Google Scholar 

  9. E. Portelius, H. Zetterberg, U. Andreasson, G. Brinkmalm, N. Andreasen, A. Wallin, A. Westman-Brinkmalm, K. Blennow, Neurosci. Lett. 409, 215–219 (2006)

    Article  Google Scholar 

  10. C. Soto, G.P. Saborio, B. Permanne, Acta Neurol. Scand. Suppl. 176, 90–95 (2000)

    Article  Google Scholar 

  11. Y. Matsunaga, A. Fujii, A. Awasthi, J. Yokotani, T. Takakura, T. Yamada, Regul. Pept. 120, 227–236 (2004)

    Article  Google Scholar 

  12. J.F. Leverone, E.T. Spooner, H.K. Lehman, J.D. Clements, C.A. Lemere, Vaccine 21, 2197–2206 (2003)

    Article  Google Scholar 

  13. H. Li, J. Zou, Z. Yao, J. Yu, H. Wang, J. Xu, J. Neuroimmunol. 219, 8–16 (2010)

    Article  Google Scholar 

  14. R. Liu, C. McAllister, Y. Lyubchenko, M.R. Sierks, J. Neurosci. Res. 75, 162–171 (2004)

    Article  Google Scholar 

  15. M.Q. Liao, Y.J. Tzeng, L.Y. Chang, H.B. Huang, T.H. Lin, C.L. Chyan, Y.C. Chen, FEBS Lett. 581, 1161–1165 (2007)

    Article  Google Scholar 

  16. X.T. Du, L. Wang, Y.J. Wang, M. Andreasen, D.W. Zhan, Y. Feng, M. Li, M. Zhao, D. Otzen, D. Xue, Y. Yang, R.T. Liu, J. Alzheimer’s Dis. 27, 401–413 (2011)

    Google Scholar 

  17. A.N. Istrate, P.O. Tsvetkov, A.B. Mantsyzov, A.A. Kulikova, S.A. Kozin, A.A. Makarov, V.I. Polshakov, Biophys. J. 102, 136–143 (2012)

    Article  ADS  Google Scholar 

  18. P.O. Tsvetkov, A.A. Kulikova, A.V. Golovin, Y.V. Tkachev, A.I. Archakov, S.A. Kozin, A.A. Makarov, Biophys. J. 99, L84–L86 (2010)

    Article  Google Scholar 

  19. S. Zirah, S.A. Kozin, A.K. Mazur, A. Blond, M. Cheminant, I. Segalas-Milazzo, P. Debey, S. Rebuffat, J. Biol. Chem. 281, 2151–2161 (2006)

    Article  Google Scholar 

  20. I. Sepkhanova, M. Drescher, N.J. Meeuwenoord, R.W.A.L. Limpens, R.I. Koning, D.V. Filippov, M. Huber, Appl. Magn. Reson. 36, 209–222 (2009)

    Article  Google Scholar 

  21. M. Margittai, R. Langen, Q. Rev. Biophys. 41, 265–297 (2008)

    Article  Google Scholar 

  22. F. Scarpelli, M. Drescher, T. Rutters-Meijneke, A. Holt, D.T. Rijkers, J.A. Killian, M. Huber, J. Phys. Chem. B 113, 12257–12264 (2009)

    Article  Google Scholar 

  23. D.C. Rambaldi, A. Zattoni, P. Reschiglian, R. Colombo, L.E. De, Anal. Bioanal. Chem. 394, 2145–2149 (2009)

    Article  Google Scholar 

  24. A.L. Cloe, J.P. Orgel, J.R. Sachleben, R. Tycko, S.C. Meredith, Biochemistry 50, 2026–2039 (2011)

    Article  Google Scholar 

  25. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42–55 (2006)

    Article  ADS  Google Scholar 

  26. S. Steigmiller, M. Börsch, P. Gräber, M. Huber, Biochim. Biophys. Acta 1708, 143–153 (2005)

    Article  Google Scholar 

  27. Q.F. Ma, J. Hu, W.H. Wu, H.D. Liu, J.T. Du, Y. Fu, Y.W. Wu, P. Lei, Y.F. Zhao, Y.M. Li, Biopolymers 83, 20–31 (2006)

    Article  Google Scholar 

  28. M.N. Oda, T.M. Forte, R.O. Ryan, J.C. Voss, Nat. Struct. Biol. 10, 455–460 (2003)

    Article  Google Scholar 

  29. H. LeVine III, Protein Sci. 2, 404–410 (1993)

    Article  Google Scholar 

  30. H. Naiki, K. Higuchi, M. Hosokawa, T. Takeda, Anal. Biochem. 177, 244–249 (1989)

    Article  Google Scholar 

  31. K. Broersen, F. Rousseau, J. Schymkowitz, Alzheimer’s Res. Ther. 2, 12 (2010)

    Article  Google Scholar 

  32. K. Broersen, W. Jonckheere, J. Rozenski, A. Vandersteen, K. Pauwels, A. Pastore, F. Rousseau, J. Schymkowitz, Protein Eng. Des. Sel. 24, 743–750 (2011)

    Article  Google Scholar 

  33. M.L. Giuffrida, F. Caraci, B. Pignataro, S. Cataldo, B.P. De, V. Bruno, G. Molinaro, G. Pappalardo, A. Messina, A. Palmigiano, D. Garozzo, F. Nicoletti, E. Rizzarelli, A. Copani, J. Neurosci. 29, 10582–10587 (2009)

    Article  Google Scholar 

  34. A. Paivio, J. Jarvet, A. Gräslund, L. Lannfelt, A. Westlind-Danielsson, J. Mol. Biol. 339, 145–159 (2004)

    Article  Google Scholar 

  35. O.N. Antzutkin, Magn. Reson. Chem. 42, 231–246 (2004)

    Article  Google Scholar 

  36. C.S. Atwood, R.C. Scarpa, X. Huang, R.D. Moir, W.D. Jones, D.P. Fairlie, R.E. Tanzi, A.I. Bush, J. Neurochem. 75, 1219–1233 (2000)

    Article  Google Scholar 

  37. C.C. Curtain, F. Ali, I. Volitakis, R.A. Cherny, R.S. Norton, K. Beyreuther, C.J. Barrow, C.L. Masters, A.I. Bush, K.J. Barnham, J. Biol. Chem. 276, 20466–20473 (2001)

    Article  Google Scholar 

  38. P. Dorlet, S. Gambarelli, P. Faller, C. Hureau, Angew. Chem. Int. Ed. Engl. 48, 9273–9276 (2009)

    Article  Google Scholar 

  39. J.A. Duce, A. Tsatsanis, M.A. Cater, S.A. James, E. Robb, K. Wikhe, S.L. Leong, K. Perez, T. Johanssen, M.A. Greenough, H.H. Cho, D. Galatis, R.D. Moir, C.L. Masters, C. McLean, R.E. Tanzi, R. Cappai, K.J. Barnham, G.D. Ciccotosto, J.T. Rogers, A.I. Bush, Cell 142, 857–867 (2010)

    Article  Google Scholar 

  40. E. House, J. Collingwood, A. Khan, O. Korchazkina, G. Berthon, C. Exley, J. Alzheimers Dis. 6, 291–301 (2004)

    Google Scholar 

  41. X. Huang, C.S. Atwood, R.D. Moir, M.A. Hartshorn, R.E. Tanzi, A.I. Bush, J. Biol. Inorg. Chem. 9, 954–960 (2004)

    Article  Google Scholar 

  42. D. Jiang, X. Li, L. Liu, G.B. Yagnik, F. Zhou, J. Phys. Chem. B 114, 4896–4903 (2010)

    Article  Google Scholar 

  43. T. Kowalik-Jankowska, M. Ruta, K. Wisniewska, L. Lankiewicz, J. Inorg. Biochem. 95, 270–282 (2003)

    Article  Google Scholar 

  44. T. Kowalik-Jankowska, M. Ruta, K. Wisniewska, L. Lankiewicz, M. Dyba, J. Inorg. Biochem. 98, 940–950 (2004)

    Article  Google Scholar 

  45. S.A. Kozin, Y.V. Mezentsev, A.A. Kulikova, M.I. Indeykina, A.V. Golovin, A.S. Ivanov, P.O. Tsvetkov, A.A. Makarov, Mol. BioSyst. 7, 1053–1055 (2011)

    Article  Google Scholar 

  46. B.K. Shin, S. Saxena, Biochemistry 47, 9117–9123 (2008)

    Article  Google Scholar 

  47. C.D. Syme, R.C. Nadal, S.E.J. Rigby, J.H. Viles, J. Biol. Chem. 279, 18169–18177 (2004)

    Article  Google Scholar 

  48. P.O. Tsvetkov, I.A. Popov, E.N. Nikolaev, A.I. Archakov, A.A. Makarov, S.A. Kozin, ChemBioChem 9, 1564–1567 (2008)

    Article  Google Scholar 

  49. H. Yu, J. Ren, X. Qu, ChemBioChem 9, 879–882 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Edgar Groenen for the constant support and fruitful discussions. This work is part of the research program of the ‘Stichting voor Fundamenteel Onderzoek der Materie (FOM)’, which is financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)”, Grant (03BMP03). Financial support from NWO is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabestari, M., Plug, T., Motazacker, M.M. et al. The Aggregation Potential of the 1–15- and 1–16-Fragments of the Amyloid β Peptide and Their Influence on the Aggregation of Aβ40. Appl Magn Reson 44, 1167–1179 (2013). https://doi.org/10.1007/s00723-013-0469-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-013-0469-3

Keywords

Navigation