Skip to main content
Log in

Three ammonium-iron-sulfite phases from a burning dump of the Vasas abandoned opencast coal mine (Pécs, Mecsek Mountains, Hungary) and the new mineral kollerite

  • Research
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Three ammonium-iron-sulfites (AIS) from a burning coal dump in an abandoned open coal pit at Pécs-Vasas (Mecsek Mountains, South Hungary) were identified: (NH4)9Fe3+(SO3)6 (AIS-1), (NH4)2Fe2+(SO3)2 (AIS-2), and (NH4)2Fe3+(OH)(SO3)2·H2O (AIS-3). They were formed by the interaction of decomposing iron sulfides and ammonia released from organic matter. AIS-1 and AIS-2 are metastable; they break down in a few weeks (AIS-1) respectively years (AIS-2). AIS-1 forms red, stubby columnar to thick tabular crystals up to 0.2 mm in length. AIS-2 appears as brown tabular to short prismatic crystals up to 0.1 mm, often they create columnar intergrowths. AIS-3 is more stable. It was approved as a new mineral species (mineral name kollerite, IMA-CNMNC 2018–131). Sprays of natural kollerite up to 1.5 mm are composed of yellow, long-prismatic or lath-like crystals up to 0.1 mm in length. AIS-1 is characterized by powder-X-ray diffraction only. The crystal structures of AIS-2 [synthetic material, R\(\overline {3}\)m, a = 5.3879(8), c = 19.980(4) Å] and kollerite [Cmcm, a = 17.803(15), b = 7.395(5), c = 7.096(5) Å] were investigated by single-crystal X-ray diffraction. AIS-2 is topologically equivalent to bütschliite. Isolated Fe2+O6 polyhedra are corner-connected to sulfite anions. 2D nets with composition [Fe2+(SO3)2]2− are parallel to (0001). Kollerite crystallizes in a new structure type. The FeO6 octahedra are corner linked to buckled [Fe3+(OH)(SO3)2]2− chains. In both cases, ammonium cations are intercalated. Connection is verified by hydrogen bonds only; all H atom positions are located experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alkemper J, Fuess H (1998) The crystal structures of NaMgPO4, Na2CaMg(PO4)2 and Na18Ca13Mg5(PO4)18: New examples for glaserite related structures. Z Krist 213:282–287

    Google Scholar 

  • Altaner SP, Fitzpatrick JJ, Krohn MD, Bethke PM, Hayba DO, Goss JA, Brown ZA (1988) Ammonium in Alunites Am Mineral 73:145–152

    Google Scholar 

  • Anthony JW, McLean WJ, Laughon RB (1972) The crystal structure of yavapaiite: a discussion. Am Mineral 57:1546–1549

    Google Scholar 

  • Basso R, Lecchetti G, Palenzona A (1991) Gravegliaite, MnSO3·3H2O, a new mineral from Val Graveglia (Northern Apennines, Italy). Z Krist 197:97–106

    Google Scholar 

  • Bindi L, Bonazzi P, Dei L, Zoppi A (2005) Does the bazhenovite structure really contain a thiosulfate group? A structural and spectroscopic study of a sample from the type locality. Amer Mineral 90:1556–1562

    Google Scholar 

  • Bojar H-P, Walter F (2016) Fleisstalite, IMA 2016–038. CNMNC Newsletter No. 33, October 2016, p. 1136. Mineral Mag 80:1135–1144

    Google Scholar 

  • Brese NE, O’Keeffe M (1991) Bond-Valence Parameters for Solids Acta Cryst B47:192–197

    Google Scholar 

  • Burns PC, Hawthorne FC (1994) The crystal structure of humberstonite, a mixed sulfate-nitrate mineral. Canad Mineral 32:381–385

    Google Scholar 

  • Chikán G, Budai T (2005) Geological map of Hungary 1:100,000. L-34–61 Pécs. Geological Institute of Hungary, Budapest

  • Chukanov NV, Rastsvetaeva RK, Pekov IV, Zadov AE (2007) Alloriite, Na5K1.5Ca(Si6Al6O24)(SO4)(OH)0.5·H2O, a new mineral species of the cancrinite group. Geol Ore Deposits 49:752–757

    Google Scholar 

  • Chukanov NV, Zubkova NV, Varlamov DA, Pekov IV, Belakovskiy DI, Britvin SN, Van KV, Ermolaeva VN, Vozchikova SA, Pushcharovsky DYu (2022) Steudelite, (Na3☐)[(K, Na)17Ca7]Ca4(Al24Si24O96)(SO3)6F6·4H2O, a new cancrinite-group mineral with afghanite-type framework topology. Phys Chem Mineral 49:1–11

    Google Scholar 

  • Effenberger H, Langhof H (1984) On the aplanarity of the CO3 group in buetschliite, dipotassium calcium dicarbonate, K2Ca(CO3)2. A further refinement of the atomic arrangement. Acta Cryst C40:1299–1300

    Google Scholar 

  • Ende M, Effenberger H, Fehér B, Sajó I, Kótai L, Szakáll S (2021) Kollerite, (NH4)2Fe(SO3)2(OH)·H2O, a new sulfite mineral. Mitt Österr Mineral Ges 167:88

    Google Scholar 

  • Erämetsä O (1943) Über Ammonisulfitoferriate. Ann Acad Sci Fenn Ser A LIX:5–30

  • Erämetsä O, Valkonen J (1972) Ammonium Ferric Sulfites Suomen Kemistilehti 45:91–94

    Google Scholar 

  • Fehér B. Sajó I, Kótai L, Szakáll S, Ende M, Effenberger H, Mihály J, Szabó D, Koller G (2021) Three new ammonium-iron-sulfite phases from a burning dump of the Vasas abandoned opencast coal mine. Pécs, Mecsek Mts., Hungary. Acta Mineral-Petrogr Abstracts Ser 11:11

  • Gates-Rector SD, Blanton TN (2019) The Powder Diffraction File: A Quality Materials Characterization Database. Powder Diffr 34:352–360

    Google Scholar 

  • Graeber EJ, Rosenzweig A (1971) The crystal structures of yavapaiite, KFe(SO4)2, and goldichite, KFe(SO4)2(H2O)4. Am Mineral 56:1917–1933

    Google Scholar 

  • Groat LA, Hawthorne FC (1986) Structure of ungemachite, K3Na8Fe3+(SO4)6(NO3)2(H2O)6 a mixed sulfate-nitrate mineral. Am Mineral 71:826–829

    Google Scholar 

  • Hawthorne FC (1983) The crystal structure of tancoite. TMPM Tschermaks Mineral Petrogr Mitt 31:121–135

    Google Scholar 

  • Hentschel G, Tillmanns E, Hofmeister W (1985) Hannebachite, natural calciumsulfite hemihydrate, CaSO3.1/2H2O. N Jb Mineral Mh 1985:241–250

    Google Scholar 

  • Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77

    Google Scholar 

  • Knobloch D, Pertlik F, Zemann J (1980) Crystal structure refinements of buetschliite and eitelite: a contribution to the stereochemistry of trigonal carbonate minerals. N Jb Mineral Mh 1980:230–236

    Google Scholar 

  • Kocsis T, Magyari J, Sajó IE, Pasinszki T, Homonnay Z, Szilágyi IM, Farkas A, May Z, Effenberger H, Szakáll S, Pawar RP, Kótai L (2018) Evidence of quasi-intramolecular redox reactions during thermal decomposition of ammonium hydroxodisulfitoferriate(III), (NH4)2[Fe(OH)(SO3)2]·H2O. J Therm Anal Calorim 132:493–502

    Google Scholar 

  • Kraus W, Nolze G (1996) PowderCell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301–303

    Google Scholar 

  • Krivovichev SV (2009) Structural crystallography of inorganic oxysalts. University Press, Oxford UK

    Google Scholar 

  • Kucha H, Viaene W (1993) Compounds with mixed and intermediate sulfur valences as precursors of banded sulfides in carbonate-hosted Zn-Pb deposits in Belgium and Poland. Mineral Dep 28:13–21

    Google Scholar 

  • Larsson LO, Niinistö L (1973) The crystal structure of ammonium hexasulphito-ferrate(III), (NH4)9[Fe(SO3)6]. Acta Chem Scand 27:859–867

    Google Scholar 

  • McDonald AM, Chao G, Grice J (1994) Abenakiite-(Ce), a new silicophosphate carbonate mineral from Mont Saint-Hilaire, Quebec: description and structure determination. Canad Mineral 32:843–854

    Google Scholar 

  • Mandarino JA (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. Canad Mineral 19:441–450

    Google Scholar 

  • Missen OP, Mills SJ, Rumsey MS, Spratt J, Najorka J, Kampf AR, Thorne B (2022) The new mineral tomiolloite, Al12(Te4+O3)5[(SO3)0.5(SO4)0.5](OH)24: A unique microporous tellurite structure. Am Mineral 107:2167–2175

    Google Scholar 

  • Nakamoto K (1963) Infrared spectra of inorganic and coordination compounds. John Wiley & Sons, New York-London

    Google Scholar 

  • Némedi-Varga Z (ed) (1995) A mecseki feketekőszén kutatása és bányaföldtana [Exploration and mining geology of the black coal in the Mecsek Mts.]. In: Zsámboki, L. (Series ed): Közlemények a magyarországi ásványi nyersanyagok történetéből, vol 7. Miskolci Egyetem, Miskolc (in Hungarian)

  • Paar WH, Braithwaite RSW, Chen TT, Keller P (1984) A new mineral, scotlandite (PbSO3) from Leadhills, Scotland; the first naturally occurring sulfite. Mineral Mag 48:283–288

    Google Scholar 

  • Parafiniuk J, Hatert F (2020) New IMA CNMNC guidelines on combustion products from burning coal dumps. Eur J Mineral 32:215–217

    Google Scholar 

  • Pekov IV, Chukanov NV, Britvin SN, Kabalov YK, Göttlicher J, Yapaskurt VO, Zadov AE, Krivovichev SV, Schüller W, Ternes B (2012) The sulfite anion in ettringite-group minerals: a new mineral species hielscherite, Ca3Si(OH)6(SO4)(SO3)·11H2O, and the thaumasite-hielscherite solid-solution series. Mineral Mag 76:1133–1152

    Google Scholar 

  • Pertlik F, Zemann L (1985) The crystal structure of scotlandite PbSO3. TMPM Tschermaks Mineral Petrogr Mitt 34:289–295

    Google Scholar 

  • Postl W, Bernhard F, Bojar H-P (2008) Hannebachit aus dem Steinbruch am Stradner Kogel bei Wilhelmsdorf, Steiermark - erster Nachweis eines Sulfits in Österreich. Joannea-Mineral 4:115–125

    Google Scholar 

  • Rastsvetaeva RK, Ivanova AG, Chukanov NV, Verin IA (2007) Crystal structure of alloriite. Dokl Earth Sci 415:815–819

    Google Scholar 

  • Schröpfer L (1973) Strukturelle Untersuchungen am CaSO3·1/2H2O. Z Anorg Allg Chem 401:1–14

    Google Scholar 

  • Scordari F, Ventruti G (2009) Sideronatrite-2M, Na2Fe(SO4)2(OH)·3H2O: crystal structure of the orthorhombic polytype and OD character analysis. Am Mineral 94:1679–1686

    Google Scholar 

  • Sheldrick GM (1997a) SHELXL-97 – a program for crystal structure refinement. University of Göttingen, Germany

    Google Scholar 

  • Sheldrick GM (1997b) SHELXS-97 – a program for the solution of crystal structures. University of Göttingen, Germany

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    Google Scholar 

  • Smith B (1999) Infrared spectral interpretation. A systematic approach. CRC Press, Boca Raton

  • Stoe & Cie (2002) X-AREA. Darmstadt, Germany

    Google Scholar 

  • Stracher GB, Prakash A, Sokol EV (Eds.) (2015) Coal and peat fires: A global perspective. Vol 3. Case studies – Coal fires. Elsevier, Amsterdam

  • Szabó D, Lovász A, Weiszburg T, Szakáll S, Kristály F (2015) Ammonioalunite and adranosite-Al. New mineral species from the burning coal dumps of Pécs-Vasas, Hungary. Acta Mineral-Petrogr Abstr Ser 9:60

  • Szakáll S, Fehér B, Tóth L (2016) Minerals of Hungary. GeoLitera, Szeged (in Hungarian)

  • Szakáll S, Kristály F (2008) Ammonium sulphates from burning coal dumps at Komló and Pécs-Vasas, Mecsek Mts., South Hungary. Mineralogia, Special Papers 32:155

  • Szakáll S, Sajó I, Fehér B, Bigi S (2012) Ammoniomagnesiovoltaite, a new voltaite-related mineral species from Pécs-Vasas, Hungary. Canad Mineral 50:403–409

    Google Scholar 

  • Ventruti G, Stasi F, Scordari F (2010) Metasideronatrite: Crystal structure and its relation with sideronatrite. Am Mineral 95:329–334

    Google Scholar 

  • Vignola P, Gatta GD, Rotiroti N, Gentile P, Hatert F, Baijot M, Bersani D, Risplendente A, Pavese A (2016) Albertiniite, Fe2+(SO3)·3H2O, a new sulfite mineral species from the Monte Falò Pb-Zn mine, Coiromonte municipality, Verbano Cusio Ossola province, Piedmont, Italy. Mineral Mag 80:985–994

    Google Scholar 

  • Weidenthaler C, Tillmanns E, Hentschel G (1993) Orschallite, Ca3(SO3)2SO4·12H2O, a new calcium-sulfite-sulfate-hydrate mineral. Mineral Petrol 48:167–177

    Google Scholar 

  • Wildner M (1992a) Structure of K2Mn(SeO3)2, a further buetschliite-type selenite. Acta Cryst C 48:595

    Google Scholar 

  • Wildner M (1992b) Isotypism of a selenite with a carbonate: structure of the buetschliite-type compound K2Co(SeO3)2, a further selenite. Acta Cryst C48:410–412

    Google Scholar 

  • Wilson AJC (ed) (1992) International Tables for Crystallography. Vol C. Kluwer Dordrecht, The Netherlands

  • Yang Z, Giester G, Ding K, Li H (2015) Crystal structure of sideronatrite-2M, Na2Fe(SO4)2(OH)(H2O)3, a new polytype from Xitieshan lead-zinc deposit, Qinghai Province, China. Eur J Mineral 27:427–432

    Google Scholar 

  • Zelensky ME, Matseevsky AB, Pekov IV (2009) The computer program QSpectr for processing X-ray powder diffraction films obtained from the Debye-Scherrer camera. Zap Ross Mineral Obshch 138(4):103–112 (in Russian with English abstract)

    Google Scholar 

  • Zemann J (1981) Zur Stereochemie Der Karbonate Fortschr Mineral 59:95–116 (in German)

    Google Scholar 

  • Zolotarev AA, Krivovichev SV, Avdontceva MS, Shilovskikh VV, Rassomakhin MA, Yapaskurt VO, Pekov IV (2020) Crystal chemistry of alkali–aluminum–iron sulfates from the burnt mine dumps of the Chelyabinsk Coal Basin, South Urals, Russia. Crystals 10:1–12

    Google Scholar 

Download references

Acknowledgements

The article is dedicated to Prof. Dr. Josef Zemann (1923-2022) on the occasion of the 100th anniversary of his birthday. We thank Gábor Koller (Pilisborosjenő, Hungary) for providing the collected sulfite samples for investigations. Franz Walter (Graz) put some details on the crystal structure of fleisstalite on our disposal. We thank Luca Bindi and an anonymous reviewer as well as the Guest Editor Tonci Balic-Zunic for critical reading the manuscript. The research was conducted as part of the project supported by the Ministry of Innovation and Technology from the National Research, Development and Innovation Fund, according to the Grant Contract issued by the National Research, Development and Innovation Office (Grant Contract reg. nr.: TKP-17-1/PALY-2020; University of Miskolc). The financial support of the University of Vienna through grant BE532003 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herta S. Effenberger.

Additional information

Editorial handling: T. Balic-Zunic.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fehér, B., Szakáll, S., Ende, M. et al. Three ammonium-iron-sulfite phases from a burning dump of the Vasas abandoned opencast coal mine (Pécs, Mecsek Mountains, Hungary) and the new mineral kollerite. Miner Petrol 117, 231–245 (2023). https://doi.org/10.1007/s00710-023-00818-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-023-00818-1

Keywords

Navigation