Skip to main content
Log in

Monchetundraite, Pd2NiTe2, a new mineral from the Monchetundra layered intrusion, Kola Peninsula, Russia

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Monchetundraite, Pd2NiTe2 is a new mineral discovered in the the Monchetundra layered intrusion, Kola Peninsula, Russia. It forms euhedral grains (up to about 20 μm) intergrown with kotulskite and pentlandite. Monchetundraite is brittle and has a metallic lustre. In plane-polarized light, monchetundraite is white to creamy pinkish white, strongly pleochroic and strongly anisotropic on prismatic sections with rotations tints of pale blue, orange and olive green; it exhibits no internal reflections. Reflectance values (R1 nd R2) of monchetundraite in air are 44.3% and 45.8% at 470 nm; 48.7% and 50.7% at 546 nm; 51.4% and 53.7% at 589 nm, and 55.6% and 57.5% at 650 nm wavelength. Five electron probe micro-analyser (EPMA) measurements of monchetundraite give a mean composition of Pd 40.04 wt%, Cu 0.72 wt%, Fe 0.27 wt%, Ni 10.58 wt%, S 0.64 wt%, Te 48.20 wt%, total 100.07 wt%, which corresponds to the empirical formula (Pd1.96Cu0.06)∑2.02(Ni0.94Fe0.03)∑0.97 (Te1.97S0.04) ∑2.01 based on a total of 5 atoms. Means of eleven EPMA analyses on the synthetic analogue are Pd 40.85 wt%, Ni 10.78 wt%, Te 48.46 wt%, total 100.09 wt%, which corresponds to Pd2.03Ni0.97Te2.00. The mass density, calculated on the basis of the empirical formula, is 9.45 g/cm3. The mineral is orthorhombic, space group Ibam, with a 6.31111(13), b 11.2469(2) Å, c 5.16687(15) Å, V 366.75(1) Å3 and Z = 4. The crystal structure was solved and refined from the powder X-ray-diffraction data of synthetic Pd2NiTe2. Monchetundraite adopts the crystal structure of synthetic Pd2NiTe2, which was first determined by Pocha et al. (2007) and refined in this study. The strongest lines in the X-ray powder diffraction pattern of synthetic Pd2NiTe2 [d in Å (I) (hkl)] are: 2.8117 (100) (040), 2.6190 (33) (211), 2.5835 (32) (002), 2.3000 (41) (141), 2.1874 (39) (231), 2.1189 (22) (150), 2.0993 (22) (240), 1.9024 (52) (042), 1.8411 (26) (321), 1.3263 (32) (181). The mineral is named for the locality, the Monchetundra intrusion, Kola Peninsula, Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amelin YV, Heaman LM, Semenov VS (1995) U-Pb geochronology of layered mafic intrusions in the eastern Baltic shield - implications for the timing and duration of Paleoproterozoic continental rifting. Precambrian Res 75:31–46

    Article  Google Scholar 

  • Bayanova TB, Nerovich LI, Mitrofanov FP, Zhavkov VA, Serov PA (2010) The Monchetundra basic massif of the Kola region: new geological and isotope Geochronological data. Dokl Earth Sci 431:288–293

    Article  Google Scholar 

  • Bruker AXS (2014) Topas 5, computing program. Bruker AXS Gmbh, Karlrsuhe

    Google Scholar 

  • Chashchin VV, Petrov SV, Drogobuzhskaya SV (2018) Loypishnyun low-sulfide Pt–Pd deposit of the Monchetundra basic massif, Kola peninsula, Russia. Geol Ore Depos 60:418–448

    Article  Google Scholar 

  • Dubost V, Balić-Žunić T, Makovicky E (2007) The crystal structure of Ni9.54Pd7.46S15. Can Mineral 45:847–855

    Article  Google Scholar 

  • Groeneveld Meijer WOJ (1955) Synthesis, structures, and properties of platinum metal tellurides. Am Mineral 40:646–657

    Google Scholar 

  • Grokhovskaya TL, Bakaev GF, Sholokhnev VV, Lapina MI, Muravitskaya GN (2003) The PGE ore mineralization in the Monchegorsk igneous layered complex (Kola peninsula, Russia). Geol Ore Depos 45:287–309

    Google Scholar 

  • Grokhovskaya TL, Lapina MI, Mokhov AV (2009) Assemblages and genesis of platinum-group minerals in low-sulfide ores of the Monchetundra deposit, Kola peninsula, Russia. Geol Ore Depos 51:467–485

    Article  Google Scholar 

  • Grokhovskaya T, Karimova O, Vymazalová A, Laufek F, Chareev D, Kovalchuk EV, Magazina LO, Rassulov VA (2019) Nipalarsite, Ni8Pd3As4, a new platinum-group mineral from the Monchetundra intrusion, Kola peninsula, Russia. Mineral Mag 83:837–845

    Article  Google Scholar 

  • Kikuchi S, Wakeshima M, Hinatsu Y (2009) Electrical properties of ternary metal-rich telluride Pd2NiTe2. J Ceram Soc Japan 117:27–31

    Article  Google Scholar 

  • Mitrofanov FP, Smol’kin VF (2004) Layered intrusions of the Monchegorsk ore district: petrology, ore mineralization, isotopes, and deep structure. Kola Science Center, Russ Acad Sci, Apatity, 177 pp [in Russian]

  • Pocha R, Lohnert C, Johrendt D (2007) The metal-rich palladium chalcogenides Pd2MCh2 (M=Fe, Co, Ni; Ch=Se, Te): Crystal structure and topology of the electron density. J Solid State Chem 180:191–197

    Article  Google Scholar 

  • Sharkov EV (2006) Formation of layered intrusions and their ore mineraization. Moscow, Scientific World, 366 pp; [in Russian]

    Google Scholar 

  • Strunz H, Nickel EH (2001) Strunz mineralogical tables. E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, Germany, 870 pp

  • Taylor A (1950) Lattice parameters of binary nickel-cobalt alloys. J Inst Met 77:585–594

    Google Scholar 

  • Vymazalová A, Laufek F, Grokhovskaya TL, Stanley CJ (2019) Monchetundraite, IMA 2019-020. CNMNC newsletter no. 50; mineral Mag 83. https://doi.org/10.1180/mgm.2019.46

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ritsumo Miyawaki, Chairman of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, and its members for helpful comments on the submitted data. The authors are grateful to Ondřej Pour (Czech Geological Survey) for EBSD measurements, and Elena Kovalchuk (Institute of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences) and Zuzana Korbelová (Institute of Geology, Czech Academy of Sciences) for carrying out the EPMA analyses. Constructive reviews by Andrei Y. Barkov and Louis J. Cabri as well as editorial comments by associate editor Luca Bindi and chief editor Lutz Nasdala are sincerely appreciated. This work was supported by the Grant Agency of the Czech Republic (project 18-15390S) and by the Russian Academy of Sciences, Program of Fundamental Research. C.J. Stanley acknowledges Natural Environment Research Council grant NE/M010848/1 Tellurium and selenium cycling and supply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Vymazalová.

Additional information

Editorial handling: L. Bindi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vymazalová, A., Laufek, F., Grokhovskaya, T.L. et al. Monchetundraite, Pd2NiTe2, a new mineral from the Monchetundra layered intrusion, Kola Peninsula, Russia. Miner Petrol 114, 263–271 (2020). https://doi.org/10.1007/s00710-020-00698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-020-00698-9

Keywords

Navigation