Skip to main content
Log in

Crystal chemistry of a Ba-dominant analogue of hydrodelhayelite and natural ion-exchange transformations in double- and triple-layer phyllosilicates in post-volcanic systems of the Eifel region, Germany

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A Ba-dominant (Ba > K) analogue of hydrodelhayelite (BDAH) from Löhley (Eifel Mts., Rhineland-Palatinate, Germany) and Ba-enriched varieties of related double- and triple-layer phyllosilicates from Eifel are studied. The crystal structure of BDAH was solved by direct methods and refined to R = 0.0698 [1483 unique reflections with I > 2σ(I)]. It is orthorhombic, Pmmn, a = 23.9532(9), b = 7.0522(3), c = 6.6064(3) Å, V = 1115.97(8) Å3, Z = 2. The structure is based upon delhayelite-type double-layer tetrahedral blocks [(Al,Si)4Si12O34(OH,O)4] connected by chains of (Ca,Fe)-centered octahedra. Ba2+ and subordinate K+ occur at partially vacant sites in zeolitic channels within the tetrahedral blocks. The crystal-chemical formula of BDAH is: (Ba0.42K0.340.24)(Ca0.88Fe0.12)2(□0.90Mg0.10)2[Si6(Al0.5Si0.5)2O17(OH0.71O0.29)2]⋅6H2O. The formation of BDAH and Ba-rich varieties of altered delhayelite/fivegite, günterblassite and hillesheimite is considered as a result of leaching of Na, Cl, F and, partially, K and Ca accompanied with hydration and the capture of Ba as a result of natural ion exchange. These minerals are structurally a “bridge” between single-layer phyllosilicates and zeolites having the open three-dimensional tetrahedral Al-Si-O frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agilent Technologies (2012) CrysAlisPro Software system, version 1.171.35.21. Agilent Technologies UK Ltd, Oxford

    Google Scholar 

  • Ananias D, Ferreira A, Rocha J, Ferreira P, Rainho JP, Morais C, Carlos LD (2001) Novel microporous europium and terbium silicates. J Am Chem Soc 123:5735–5742

    Article  Google Scholar 

  • Ananias D, Rainho JP, Ferreira A, Rocha J, Carlos LD (2004) The first examples of X-ray phosphors, and C-band infrared emitters based on microporous lanthanide silicates. J Alloys Compd 374:219–222

    Article  Google Scholar 

  • Belokoneva EL, Topnikova AP, Dimitrova OV, Volkov AS (2014) KNa2Tm[Si8O19] · 4H2O, a new layered silicate related to rhodezite-shlykovite-delhayelite-umbrianite-guenterblassite-hilleshaymite: topology-symmetry analysis of the OD-family and structure prediction. Crystallogr Rep 59(4):513–522

    Article  Google Scholar 

  • Cadoni M, Ferraris G (2009) Two new members of the rhodesite mero-plesiotype series close to delhayelite and hydrodelhayelite: synthesis and crystal structure. Eur J Mineral 21:485–493

    Article  Google Scholar 

  • Cadoni M, Ferraris G (2010) Two new silicate structures based on a rhodesite-type heteropolyhedral microporous framework. Acta Cryst B66:151–157

    Article  Google Scholar 

  • Cannillo E, Rossi G, Ungaretti L, Carobbi SG (1968) The crystal structure of macdonaldite. Atti Accad Naz Lincei Cl Sci Fis 45:399–414

    Google Scholar 

  • Cannillo E, Rossi G, Ungaretti L (1970) The crystal structure of delhayelite. Rend Soc Ital Mineral Petrol 26:63–75

    Google Scholar 

  • Chukanov NV, Rastsvetaeva RK, Aksenov SM, Pekov IV, Zubkova NV, Britvin SN, Belakovskiy DI, Schüller W, Ternes B (2012a) Günterblassite, (K,Ca)3–x Fe[(Si,Al)13O25 (OH,O)4] ·7H2O, a new mineral: the first phyllosilicate with triple tetrahedral layer. Geol Ore Dep 54(8):656–662

  • Chukanov NV, Zubkova NV, Pekov IV, Belakovskiy DI, Schüller W, Ternes B, Blass G, Pushcharovsky DYu (2012b) Hillesheimite, (K,Ca,□)2(Mg,Fe,Ca,□)2[(Si,Al)13O23 (OH)6](OH)·8H2O, a new phyllosilicate mineral of the günterblassite group. Geol Ore Dep 55(7):549–557

  • Dorfman MD, Chiragov MI (1979) Hydrodelayelite, a product of supergene alteration of delhayelite. New Data Miner USSR 28:172–175 (in Russian)

    Google Scholar 

  • Ferraris G, Gula A (2005) Polysomatic aspects of microporous minerals - heterophyllosilicates, palysepioles and rhodesite-related structures. In: Ferraris G, Merlino S (eds) Micro- and mesoporous mineral phases. Rev Mineral Geochem, vol 57. Mineral Soc Am, Washington DC, pp 69–104

  • Ferraris G, Belluso E, Gula A, Khomyakov AP, Soboleva SV (2003) The crystal structure of seidite-(Ce), Na4(Ce, Sr)2{Ti(OH)2(Si8O18)}(O, OH, F)4⋅5H2O, a modular microporous titanosilicate of the rhodesite group. Can Mineral 41:1183–1192

    Article  Google Scholar 

  • Ghose S, Sen Gupta PK, Campana CF (1987) Symmetry and crystal structure of monteregianite, Na4F2Y2Sil6O38⋅10H2O, a double-sheet silicate with zeolitic properties. Am Mineral 72:365–374

    Google Scholar 

  • Hesse KF, Liebau F, Merlino S (1992) Crystal structure of rhodesite, HK1-x Na x+2y Ca2-y {1B,3,22 }[Si8O19]•(6-z)H2O, from three localities and its relation to other silicates with dreier double layers. Z Krist 199:25–48

    Article  Google Scholar 

  • Jorda JL, Prokic S, McCusker LB, Baerlocher C, Xue C, Dong J (2005) Synthesis and structure analysis of the potassium calcium silicate CAS-1. Application of a texture approach to structure solution using data collected in transmission mode. C R Chim 8:331–339

    Article  Google Scholar 

  • Lykova IS (2015) Minerals of the Epistolite Group: postcrystallization transformations and their crystal chemical mechanisms (natural systems and modelling experiments). PhD thesis. Lomonosov Moscow State University, Moscow (in Russian)

  • Lykova IS, Pekov IV, Chukanov NV, Yapaskurt VO, Varlamov DA, Zolotarev AA Jr (2013) Ion exchange in lomonosovite, murmanite and günterblassite: experimental data. Abstracts of the International Conference “Minerals as Advanced Materials III” Kirovsk 11–12

  • Lykova IS, Pekov IV, Zubkova NV, Yapaskurt VO, Chervonnaya NA, Zolotarev AA, Giester G (2015) Crystal chemistry of cation-exchanged forms of epistolite-group minerals. Part II. Vigrishinite and Zn-exchanged murmanite. Eur J Mineral 27:669–682

    Article  Google Scholar 

  • Makovicky E (1997) Modularity – different types and approaches. EMU Notes Miner 1:315–344

    Google Scholar 

  • Munhá RF, Ananias D, Paz FAA, Rocha J (2015) Synthesis and structure of new microporous Nd(III) silicates of the rhodesite group. Z Krist 230:353–362

    Google Scholar 

  • Pekov IV, Zubkova NV, Chukanov NV, Sharygin VV, Pushcharovsky DY (2009) Crystal chemistry of delhayelite and hydrodelhayelite. Dokl Earth Sci 428(7):1216–1221

    Article  Google Scholar 

  • Pekov IV, Zubkova NV, Chukanov NV, Zadov AE, Pushcharovsky DY (2011) Fivegite, K4Ca2[AlSi7O17(O2-xOHx)][(H2O)2-xOHx]Cl: a new mineral species from the Khibiny alkaline pluton of the Kola Peninsula in Russia. Geol Ore Dep 53(7):591–603

    Article  Google Scholar 

  • Pekov IV, Zubkova NV, Chukanov NV, Turchkova AG, Filinchuk YE, Pushcharovsky DY (2012) Delhayelite and mountainite mineral families: crystal chemical relationship, microporous character and genetic features. In: Krivovichev S (ed) Minerals as advanced materials II. Springer Verlag, Berlin, pp 213–219

    Google Scholar 

  • Pekov IV, Britvin SN, Zubkova NV, Chukanov NV, Bryzgalov IA, Lykova IS, Belakovskiy DI, Pushcharovsky DY (2013) Vigrishinite, Zn2Ti4-xSi4O14(OH, H2O,)8, a new mineral from the Lovozero alkaline complex, Kola Peninsula, Russia. Geol Ore Dep 55(7):575–586

    Article  Google Scholar 

  • Pekov IV, Lykova IS, Chukanov NV, Yapaskurt VO, Belakovskiy DI, Zolotarev AA, Zubkova NV (2014) Zvyaginite, NaZnNb2Ti[Si2O7]2O(OH, F)3(H2O)4 + x (x < 1), a new mineral of the epistolite group from the Lovozero Alkaline Pluton, Kola Peninsula, Russia. Geol Ore Dep 56(8):644–656

    Article  Google Scholar 

  • Ragimov KG, Chiragov MI, Mamedov KS, Dorfman MD (1980) Crystal structure of hydrodelhayelite, KH2Ca(Si, Al)8O19⋅H2O. Dokl Akad Nauk Azerbaid SSR 36:49–51 (in Russian)

    Google Scholar 

  • Rastsvetaeva RK, Aksenov SM, Chukanov NV (2012) Crystal structure of günterblassite, a new mineral with a triple tetrahedral layer. Dokl Chem 442(2):57–62

    Article  Google Scholar 

  • Rocha J, Ferreira P, Carlos LD, Ferreira A (2000) The first microporous framework cerium silicate. Angew Chem Int Ed 39:3276–3279

    Article  Google Scholar 

  • Sharygin VV, Pekov IV, Zubkova NV, Khomyakov AP, Stoppa F, Pushcharovsky DY (2013) Umbrianite, K7Na2Ca2[Al3Si10O29]F2Cl2, a new mineral species from melilitolite of the Pian di Celle volcano, Umbria, Italy. Eur J Mineral 25:655–669

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    Article  Google Scholar 

  • Taylor WH, Jackson R (1933) The structure of edingtonite. Z Krist Krist Krist Krist 86:53–64

    Google Scholar 

  • Turchkova AG, Pekov IV, Lykova IS, Chukanov NV, Yapaskurt VO (2012) Delhayelite: ion leaching and ion exchange. In: Krivovichev S (ed) Minerals as advanced materials II. Springer Verlag, Berlin, pp 221–228

    Google Scholar 

  • Zubkova NV, Filinchuk YE, Pekov IV, Pushcharovsky DY, Gobechiya ER (2010) Crystal structures of shlykovite and cryptophyllite. Comparative crystal chemistry of phyllosilicate minerals of the mountainite family. Eur J Mineral 22:547–555

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous referees for valuable comments. This study was supported by the Russian Science Foundation, grant no. 14-17-00048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Zubkova.

Additional information

Editorial handling: L. Bindi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubkova, N.V., Chukanov, N.V., Pekov, I.V. et al. Crystal chemistry of a Ba-dominant analogue of hydrodelhayelite and natural ion-exchange transformations in double- and triple-layer phyllosilicates in post-volcanic systems of the Eifel region, Germany. Miner Petrol 110, 885–893 (2016). https://doi.org/10.1007/s00710-016-0441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-016-0441-7

Keywords

Navigation