Skip to main content

Advertisement

Log in

Zirconolite, zircon and monazite-(Ce) U-Th-Pb age constraints on the emplacement, deformation and alteration history of the Cummins Range Carbonatite Complex, Halls Creek Orogen, Kimberley region, Western Australia

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In situ SHRIMP U-Pb dating of zirconolite in clinopyroxenite from the Cummins Range Carbonatite Complex, situated in the southern Halls Creek Orogen, Kimberley region, Western Australia, has provided a reliable 207Pb/206Pb age of emplacement of 1009 ± 16 Ma. Variably metamict and recrystallised zircons from co-magmatic carbonatites, including a megacryst ~1.5 cm long, gave a range of ages from ~1043–998 Ma, reflecting partial isotopic resetting during post-emplacement deformation and alteration. Monazite-(Ce) in a strongly foliated dolomite carbonatite produced U-Th-Pb dates ranging from ~900–590 Ma. Although the monazite-(Ce) data cannot give any definitive ages, they clearly reflect a long history of hydrothermal alteration/recrystallisation, over at least 300 million years. This is consistent with the apparent resetting of the Rb-Sr and K-Ar isotopic systems by a post-emplacement thermal event at ~900 Ma during the intracratonic Yampi Orogeny. The emplacement of the Cummins Range Carbonatite Complex probably resulted from the reactivation of a deep crustal structure within the Halls Creek Orogen during the amalgamation of Proterozoic Australia with Rodinia over the period ~1000–950 Ma. This may have allowed an alkaline carbonated silicate magma that was parental to the Cummins Range carbonatites, and generated by redox and/or decompression partial melting of the asthenospheric mantle, to ascend from the base of the continental lithosphere along the lithospheric discontinuity constituted by the southern edge of the Halls Creek Orogen. There is no evidence of a link between the emplacement of the Cummins Range Carbonatite Complex and mafic large igneous province magmatism indicative of mantle plume activity. Rather, patterns of Proterozoic alkaline magmatism in the Kimberley Craton may have been controlled by changing plate motions during the Nuna–Rodinia supercontinent cycles (~1200–800 Ma).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alvin MP, Dunphy JM, Groves DI (2004) Nature and genesis of a carbonatite-associated fluorite deposit at Speewah, east Kimberley region, Western Australia. Mineral Petrol 80:127–153

    Article  Google Scholar 

  • Amelin Y, Zaitsev AN (2002) Precise geochronology of phoscorites and carbonatites: the critical role of U-series disequilibrium in age interpretations. Geochim Cosmochim Acta 66:2399–2419

    Article  Google Scholar 

  • Andrew R (1990) Cummins Range carbonatite. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. AusIMM, Melbourne, pp. 711–713

    Google Scholar 

  • Andrew RL, Richards MN, Jaques AL, Knutson J, Townend R (1986) The Cummins Range carbonatite, Western Australia. In: Abstracts of the 4th International Kimberlite Conference, Geological Society of Australia, Perth, 1986. pp 12–14

  • Barnes SJ, Anderson J, Smith T, Bagas L (2008) The Mordor alkaline igneous complex, central Australia: PGE-enriched disseminated sulfide layers in cumulates from a lamprophyric magma. Mineral Deposita 43:641–662. doi:10.1007/s00126-008-0187-1

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher N (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622. doi:10.1007/s00410-002-0364-7

    Article  Google Scholar 

  • Black LP, Gulson BI (1978) The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR J Aust Geol Geophys 3:227–232

    Google Scholar 

  • Bodorkos S, Reddy SM (2004) Proterozoic cooling and exhumation of the northern central Halls Creek Orogen, Western Australia: constraints from a reconnaissance 40Ar/39Ar study. Aust J Earth Sci 51:591–609. doi:10.1111/j.1400-0952.2004.01077.x

    Article  Google Scholar 

  • Brown SJA, Fletcher IR (1999) SHRIMP U–Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru ignimbrite, New Zealand: evidence for >250 ka magma residence times. Geology 27:1035–1038

    Article  Google Scholar 

  • Cawood PA, Korsch RJ (2008) Assembling Australia: Proterozoic building of a continent. Precambrian Res 166:1–38

    Article  Google Scholar 

  • Chalapathi Rao NV, Wu FY, Mitchell RH, et al. (2013) Mesoproterozoic U–Pb ages, trace element and Sr–Nd isotopic composition of perovskite from kimberlites of the eastern Dharwar craton, southern India: distinct mantle sources and a widespread 1.1 Ga tectonomagmatic event. Chem Geol 353:48–64. doi:10.1016/j.chemgeo.2012.04.023

    Article  Google Scholar 

  • Claoué-Long JC, Hoatson DM (2005) Proterozoic mafic–ultramafic intrusions in the Arunta region, central Australia: part 2: event chronology and regional correlations. Precambrian Res 142:134–158

    Article  Google Scholar 

  • Claoué-Long JC, Hoatson DM (2009) Guide to using the map of Australian Proterozoic large igneous provinces. Geoscience Australia Record 2009/44

  • Condie K, Pisarevsky SA, Korenaga J, Gardoll S (2015) Is the rate of supercontinent assembly changing with time? Precambrian Res 259:278–289. doi:10.1016/j.precamres.2014.07.015

    Article  Google Scholar 

  • Currie K, Knutson J, Temby P (1992) The Mud Tank carbonatite complex, central Australia—an example of metasomatism at mid-crustal levels. Contrib Mineral Petrol 109:326–339

    Article  Google Scholar 

  • Czuppon G, Ramsay RR, Özgenc I, et al. (2014) Stable (H, O, C) and noble-gas (He and Ar) isotopic compositions from calcite and fluorite in the Speewah Dome, Kimberley region, Western Australia: implications for the conditions of crystallization and evidence for the influence of crustal-mantle fluid mixing. Mineral Petrol 108:759–775. doi:10.1007/s00710-014-0333-7

    Article  Google Scholar 

  • Downes PJ, Wartho J-A, Griffin BJ (2006) Magmatic evolution and ascent history of the Aries micaceous kimberlite, central Kimberley Basin, Western Australia: evidence from zoned phlogopite phenocrysts, and UV laser 40Ar/39Ar analysis of phlogopite–biotite. J Petrol 47:1751–1783

    Article  Google Scholar 

  • Downes PJ, Demény A, Czuppon G, et al. (2014) Stable H–C–O isotope and trace element geochemistry of the Cummins Range carbonatite complex, Kimberley region, Western Australia: implications for hydrothermal REE mineralization, carbonatite evolution and mantle source regions. Mineral Deposita 49:905–932. doi:10.1007/s00126-014-0552-1

    Article  Google Scholar 

  • Duncan RK, Willett GC (1990) Mount Weld carbonatite. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. The Australian Inst Mining Metallurgy, Melbourne, pp. 591–597

    Google Scholar 

  • Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Mineral Petrol 98:55–76. doi:10.1007/s00710-009-0074-1

    Article  Google Scholar 

  • Ernst RE, Wingate M, Buchan K, Li Z-X (2008) Global record of 1600–700 Ma large igneous provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Res 160:159–178

    Article  Google Scholar 

  • Fishwick S, Reading AM (2008) Anomalous lithosphere beneath the Proterozoic of western and central Australia: a record of continental collision and intraplate deformation? Precambrian Res 166:111–121

    Article  Google Scholar 

  • Fishwick S, Kennett BNL, Reading AM (2005) Contrasts in lithospheric structure within the Australian craton-insights from surface wave tomography. Earth Planet Sci Lett 231:163–176

    Article  Google Scholar 

  • Fletcher IR, McNaughton NJ, Davis WJ, Rasmussen B (2010) Matrix effects and calibration limitations in ion probe U–Pb and Th–Pb dating of monazite. Chem Geol 270:31–44

    Article  Google Scholar 

  • Graham S, Lambert D, Shee S (2004) The petrogenesis of carbonatite, melnoite and kimberlite from the eastern goldfields province, Yilgarn Craton. Lithos 76:519–533

    Article  Google Scholar 

  • Griffin TJ, Tyler IM, Playford PE (1993) Lennard River, W.A. (3rd edition): Western Australia Geological Survey, 1:250 000 Geological Series Explanatory Notes, 56 pp

  • Griffin TJ, Page RW, Sheppard S, Tyler IM (2000) Tectonic implications of Palaeoproterozoic post-collisional, high-K felsic igneous rocks from the Kimberley region of northwestern Australia. Precambrian Res 101:1–23

    Article  Google Scholar 

  • Gwalani LG, Rogers KA, Demény A, Groves DI, Ramsay R, Beard A, Downes PJ, Eves A (2010) The Yungul carbonatite dykes associated with the epithermal fluorite deposit at Speewah, Kimberley, Australia: carbon and oxygen isotope constraints on their origin. Mineral Petrol 98:123–141

    Article  Google Scholar 

  • Hales B (2014) 40Ar/39Ar study of potassium feldspar-rich rocks of the Speewah Dome, East Kimberley region, Western Australia. Honours Thesis, University of Western Australia

  • Hassan LY (2000) Mineral occurrences and exploration potential of the East Kimberley. Geological Survey of Western Australia Report 74. Department of Minerals and Energy, Perth, p 60

    Google Scholar 

  • Hoatson DM, Claoué-Long JC, Jaireth S (2008) Guide to using the 1:5 000 000 map of Australian Proterozoic mafic–ultramafic magmatic events. Geoscience Australia Record 2008/15, Geoscience Australia, p 140

  • Jaques AL (2008) Australian carbonatites: their resources and geodynamic setting. 9th International Kimberlite Conference Extended Abstract 91KC-A-00347

  • Jaques AL, Milligan PR (2004) Patterns and controls on the distribution of diamondiferous intrusions in Australia. Lithos 77:783–802

    Article  Google Scholar 

  • Jaques AL, Lewis JD, Smith CB (1986) The kimberlites and lamproites of Western Australia. Geol Surv W Aust Bull 132, p 268

    Google Scholar 

  • Jelsma H, Barnett WP, Richards S, Lister G (2009) Tectonic setting of kimberlites. Lithos 112:155–165. doi:10.1016/j.lithos.2009.06.030

    Article  Google Scholar 

  • Kennett BLN 2003 Seismic structure in the mantle beneath Australia. In: Hills RR, Mueller RD (eds) Evolution and dynamics of the Australian plate, Geol Soc Amer 372 and Geol Soc Aust, Spec Pub, vol 22. pp 7–23

  • Ksienzyk AK, Jacobs J, Boger SD, et al. (2012) U–Pb ages of metamorphic monazite and detrital zircon from the Northampton Complex: evidence of two orogenic cycles in Western Australia. Precambrian Res 198-199:37–50. doi:10.1016/j.precamres.2011.12.011

    Article  Google Scholar 

  • Kumar A, Heaman LM, Manikyamba C (2007) Mesoproterozoic kimberlites in south India: a possible link to ~1.1 Ga global magmatism. Precambrian Res 154:192–204

    Article  Google Scholar 

  • Li Z-X, Bogdanova SV, Collins AS, et al. (2008) Assembly, configuration, and break-up history of rodinia: a synthesis. Precambrian Res 160:179–210

    Article  Google Scholar 

  • Ludwig KR (2008) Isoplot 3.6; a geochronology toolkit for Microsoft Excel. Berkeley Geochronology Center, 77 pp

  • Ludwig KR (2009) Squid 2; a user’s manual. Berkeley Geochronology Center, 100 pp

  • Luguet A, Jaques AL, Pearson D, et al. (2009) An integrated petrological, geochemical and Re–Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos 112:1096–1108

    Article  Google Scholar 

  • Midende G, Boulvais P, Tack L, et al. (2014) Petrography, geochemistry and U–Pb zircon age of the Matongo carbonatite massif (Burundi): implication for the Neoproterozoic geodynamic evolution of central Africa. J Afr Earth Sci 100:1–19. doi:10.1016/j.jafrearsci.2014.08.010

    Article  Google Scholar 

  • Myers JS, Shaw RD, Tyler IM (1996) Tectonic evolution of Proterozoic Australia. Tectonics 15:1431–1446

    Article  Google Scholar 

  • Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52:1–18

    Article  Google Scholar 

  • O'Neill C, Moresi L, Jaques AL (2005) Geodynamic controls on diamond deposits: implications for Australian occurrences. Tectonophysics 404:217–236

    Article  Google Scholar 

  • Oversby VM, Ringwood AE (1981) Lead isotopic studies of zirconolite and perovskite and their implications for long range synroc stability. Radioactive Waste Management 1:289–307

    Google Scholar 

  • Pearson JM (1996) Alkaline rocks of the Gifford Creek Complex, Gascoyne Province, Western Australia: their petrogenetic and tectonic significance. PhD thesis, University of Western Australia

  • Phillips D, Clarke W, Jaques AL (2014) New 40Ar/39Ar ages for the West Kimberley lamproites and implications for Australian plate geodynamics. Abstract, 10th International Kimberlite Conference, Bangalore, India

  • Pidgeon RT, Smith CB, Fanning CM (1989) Kimberlite and lamproite emplacement ages in Western Australia. In: Ross J et al. (eds) Kimberlites and related rocks: their composition, occurrence, origin and emplacement, Geol Soc Australia Spec Publ 14, vol 1. Blackwell, Oxford, pp. 369–381

    Google Scholar 

  • Pirajno F, González-Álvarez I, Chen W, et al. (2014) The Gifford Creek ferrocarbonatite complex, Gascoyne Province, Western Australia: associated fenitic alteration and a putative link with the ~1075 Ma Warakurna LIP. Lithos 202-203:100–119. doi:10.1016/j.lithos.2014.05.012

    Article  Google Scholar 

  • Pisarevsky SA, Wingate MTD, Li Z-X, et al. (2014) Age and paleomagnetism of the 1210 Ma Gnowangerup–Fraser dyke swarm, Western Australia, and implications for late Mesoproterozoic paleogeography. Precambrian Res 246:1–15. doi:10.1016/j.precamres.2014.02.011

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR (2004) Zirconolite: a new U-Pb chronometer for mafic igneous rocks. Geology 32:785–788

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Muhling JR (2008a) Pb/Pb geochronology, petrography and chemistry of Zr-rich accessory minerals (zirconolite, tranquillityite and baddeleyite) in Mare basalt 10047. Geochim Cosmochim Acta 72:5799–5818

    Article  Google Scholar 

  • Rasmussen B, Mueller AG, Fletcher IR (2008b) Zirconolite and xenotime U–Pb age constraints on the emplacement of the Golden Mile dolerite sill and gold mineralization at the Mt Charlotte mine, Eastern Goldfields Province, Yilgarn Craton, Western Australia. Contrib Mineral Petrol 157:559–572. doi:10.1007/s00410-008-0352-7

    Article  Google Scholar 

  • Richards MN (1984) Annual report for 1983 on exploration licence 80/113, Cummins Range, Mt. Bannerman, SE52-13, Western Australia. CRA Exploration Pty. Ltd. Report to West Australian Department of Mines and Petroleum, A14632, CRAE Ref. No. 12981, 40 pp

  • Richards MN (1985) Annual report for 1984 on exploration licence 80/113, Cummins Range, Mt. Bannerman, SE52-13, Western Australia, Volume 1. CRA Exploration Pty. Ltd. Report to West Australian Department of Mines and Petroleum, A16631, CRAE Ref. No. 13612, 20 pp

  • Robey JVA, Bristow JW, Marx MR, Joyce J, Danchin RV, Arnott F (1989) Alkaline ultrabasic dikes near Norseman, Western Australia. In: Ross J et al. (eds) Kimberlites and related rocks: their composition, occurrence, origin and emplacement, Geol Soc Austral Spec Publ 14, vol 1. Blackwell, Oxford, pp. 383–391

    Google Scholar 

  • Rodionov NV, Belyatsky BV, Antonov AV, et al. (2012) Comparative in-situ U–Th–Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline–ultramafic complex, Kola Peninsula, Russia. Gondwana Res 21:728–744. doi:10.1016/j.gr.2011.10.005

  • Rukhlov AS, Bell K (2010) Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution. Mineral Petrol 98:11–54. doi:10.1007/s00710-009-0054-5

    Article  Google Scholar 

  • Salier BP, Groves DI, McNaughton NJ, Fletcher IR (2004) The world-class Wallaby gold deposit, Laverton, Western Australia: an orogenic-style overprint on a magmatic-hydrothermal magnetite-calcite alteration pipe? Mineral Deposita 39:473–494. doi:10.1007/s00126-004-0425-0

    Article  Google Scholar 

  • Sanders TS (1999) Mineralization of the Halls Creek Orogen, east Kimberley region, Western Australia. Geological Survey of Western Australia Report 66. Department of Minerals and Energy, Perth, 44 pp

  • Shaw RD, Tyler IM, Griffin T, Webb A (1992) New K-Ar constraints on the onset of subsidence in the Canning Basin, Western Australia. BMR J Aust Geol Geophys 13:31–36

    Google Scholar 

  • Smit KV, Shirey SB, Richardson SH, et al. (2010) Re–Os isotopic composition of peridotitic sulphide inclusions in diamonds from Ellendale, Australia: age constraints on Kimberley cratonic lithosphere. Geochim Cosmochim Acta 74:3292–3306. doi:10.1016/j.gca.2010.03.001

    Article  Google Scholar 

  • Smith JB, Barley ME, Groves DI, Krapez B, McNaughton NJ, Bickle MJ, Champion HJ (1998) The Sholl shear zone, West Pilbara; evidence for a domain boundary structure from integrated tectonostratigraphic analyses, SHRIMP U–Pb dating and isotopic and geochemical data of granitoids. Precambrian Res 88:143–171

    Article  Google Scholar 

  • Smithies RH, Kirkland CL, Korhonen FJ, et al. (2015) The Mesoproterozoic thermal evolution of the Musgrave Province in central Australia — Plume vs. the geological record. Gondwana Res 27(4):1419–1429. doi:10.1016/j.gr.2013.12.014

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Lett 26:207–221

    Article  Google Scholar 

  • Stern RA (2001) A new isotopic and trace-element standard for the ion microprobe: preliminary thermal ionization mass spectrometry (TIMS) U-Pb and electron-microprobe data. Radiogenic age and Isotopic Studies: Report 14, Geol Surv Canada, Current Research 2001-F1, pp 11

  • Stern RA, Rainbird RH (2001) Advancements in xenotime U-Pb geochronology by ion microprobe. In Eleventh Annual VM Goldschmidt Conference 1:3872

    Google Scholar 

  • Stracke KJ, Ferguson J, Black LP (1979) Structural setting of kimberlites in south-eastern Australia. In: Boyd FR, Meyer HOA (eds) Kimberlites, diatremes and diamonds: their geology, petrology, and geochemistry. American Geophysical Union, Washington DC, pp. 71–91

    Chapter  Google Scholar 

  • Sun S-S, Jaques AL, McCulloch MT (1986) Isotopic evolution of the Kimberley block, Western Australia. In: Abstracts of 4th International Kimberlite Conference, Geological Society of Australia 16, Perth, 1986. pp 346–348

  • Tappe S, Kjarsgaard BA, Kurszlaukis S, et al. (2014) Petrology and Nd-Hf isotope geochemistry of the Neoproterozoic Amon kimberlite sills, Baffin Island (Canada): evidence for deep mantle magmatic activity linked to supercontinent cycles. J Petrol 55:2003–2042. doi:10.1093/petrology/egu048

    Article  Google Scholar 

  • Thorne AM, Tyler IM (1996) Mesoproterozoic and Phanerozoic sedimentary basins in the northern Halls Creek Orogen: constraints on the timing of strike-slip movement on the Halls Creek fault system. Geological Survey of Western Australia, Annual Review 1995–96:156–168

    Google Scholar 

  • Tichomirowa M, Grosche G, Götze J, et al. (2006) The mineral isotope composition of two Precambrian carbonatite complexes from the Kola alkaline province–alteration versus primary magmatic signatures. Lithos 91:229–249

    Article  Google Scholar 

  • Tyler IM, Griffin TJ, Page RW, Shaw RD (1995) Are there terranes within the Lamboo Complex of the Halls Creek Orogen? Geological Survey of Western Australia, Annual Review 1993–94:37–46

    Google Scholar 

  • Tyler IM, Page RW, Griffin TJ (1999) Depositional age and provenance of the Marboo Formation from SHRIMP U–Pb zircon geochronology: implications for the early Palaeoproterozoic tectonic evolution of the Kimberley region, Western Australia. Precambrian Res 95:225–243

    Article  Google Scholar 

  • Tyler IM, Hocking RM, Haines PW (2012) Geological evolution of the Kimberley region of Western Australia. Episodes 35:298–306

    Google Scholar 

  • Wang X-C, Li Z-X, Li J, et al. (2014) Genesis of the 1.21 Ga Marnda Moorn large igneous province by plume–lithosphere interaction. Precambrian Res 241:85–103. doi:10.1016/j.precamres.2013.11.008

    Article  Google Scholar 

  • Webb AW, Thomson BP, Blissett AH, et al. (1986) Geochronology of the Gawler Craton, South Australia. Aust J Earth Sci 33:119–143. doi:10.1080/08120098608729355

    Article  Google Scholar 

  • White SH, Muir MD (1989) Multiple reactivation of coupled orthogonal fault systems: an example from the Kimberley region in northern Western Australia. Geology 17:618–621

    Article  Google Scholar 

  • White SH, Smith CB (1992) The structural geological setting of the Argyle and Ellendale diamondiferous lamproite pipes (Western Australia). Russ Geol Geophys 33:79–90

    Google Scholar 

  • White SH, De Boorder H, Smith CB (1995) Structural controls of kimberlite and lamproite emplacement. J Geochem Explor 53:245–264

    Article  Google Scholar 

  • Wingate MTD (2007) Proterozoic mafic dykes in the Yilgarn Craton. In: Proceedings of Geoconferences (WA) Inc Kalgoorlie’07 Conference. pp 80–84

  • Wingate MTD, Evans DA (2003) Palaeomagnetic constraints on the Proterozoic tectonic evolution of Australia. Geol Soc Lond Spec Publ 206:77–91

    Article  Google Scholar 

  • Wingate MTD, Pidgeon RT (2005) The Marnda Moorn LIP, A late Mesoproterozoic large igneous province in the Yilgarn Craton, Western Australia July 2005 LIP of the Month (unpub). Large Igneous Provinces Commission, International Association of Volcanology and Chemistry of the Earth’s Interior, pp. 6, http://www.largeigneousprovinces.org/05jul. Accessed on 2 Dec 2015

  • Wingate MTD, Campbell IH, Compston W, Gibson GM (1998) Ion microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Res 87:135–159

    Article  Google Scholar 

  • Wingate MTD, Pirajno F, Morris PA (2004) Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geol 32:105. doi:10.1130/G20171.1

    Article  Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008) Carbonatite occurrences of the World: Map and database. Geological Survey of Canada, Open File 5796, 1 CD-ROM +1 map

  • Wu F-Y, Yang Y-H, Mitchell RH, et al. (2010) In situ U–Pb and Nd–Hf–(Sr) isotopic investigations of zirconolite and calzirtite. Chem Geol 277:178–195. doi:10.1016/j.chemgeo.2010.08.007

    Article  Google Scholar 

  • Wyatt BA, Sumpton JDH, Stiefenhofer J, Shee SR, Smith TW (1999) Kimberlites in the Forrest River area, Kimberley region, Western Australia. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The P.H. Nixon Volume, Proceedings of the Seventh International Kimberlite Conference. Red Roof Design, Capetown, pp. 912–922

    Google Scholar 

  • Wyborn L, Hazell M, Page R, Idnurum M, Sun S-S (1998) A newly discovered major Proterozoic granite-alteration system in the Mount Webb region, central Australia, and implications for Cu-Au mineralization. AGSO Res Newslett 28:1–6

    Google Scholar 

Download references

Acknowledgments

We would like to thank Bernie Kirkpatrick from Navigator Resources and Geoff Collis from Kimberley Rare Earths for providing samples and geological data from the Cummins Range Carbonatite Complex, as well as company illustrations and images. The staff of the GSWA core library provided access to and samples from the Cummins Range drill core. Lalou Gwalani provided great assistance in sampling the Cummins Range drill core and in earlier phases of this research. James Tolley (ANU) kindly provided a digital version of the simplified geological map of the Cummins Range Carbonatite Complex. Silvio Mezzomo at Geoscience Australia drafted Fig. 2. Comments from Dr. Steve Sheppard and an anonymous reviewer helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Downes.

Additional information

Editorial handling: L. G. Gwalani

Appendix

Appendix

Table 8 Rb-Sr isotopic data for the Cummins Range Carbonatite Complex and the Bow Hill UML dykes, Halls Creek Orogen, Western Australia (Sun et al. 1986)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Downes, P.J., Dunkley, D.J., Fletcher, I.R. et al. Zirconolite, zircon and monazite-(Ce) U-Th-Pb age constraints on the emplacement, deformation and alteration history of the Cummins Range Carbonatite Complex, Halls Creek Orogen, Kimberley region, Western Australia. Miner Petrol 110, 199–222 (2016). https://doi.org/10.1007/s00710-015-0418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0418-y

Keywords

Navigation