Skip to main content
Log in

Structure, ultrastructure and cation accumulation in quinoa epidermal bladder cell complex under high saline stress

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Quinoa is a facultative halophyte with excellent tolerance to salinity. In this study, the epidermal bladder cell complex (EBCc) of quinoa leaves was studied to determine their cellular characteristics and involvement in salt tolerance. We used light microscopy, confocal RAMAN microscopy, confocal fluorescence microscopy, transmission electron microscopy, and environmental scanning electron microscopy complemented by energy dispersive X-ray analysis. Ionic content was quantified with flame atomic absorption spectroscopy and with flame emission photometry. Results show that: (i) the number of EBCcs remains constant but their density and area vary with leaf age; (ii) stalk cells store lipids and exhibit thick walls, bladder cells present carotenes in small vesicles, oxalate crystals in vacuoles and lignin in their walls and both stalk and bladder cells have cuticles that differ in wax and cutin content; (iii) chloroplasts containing starch can be found on both stalk and bladder cells, and the latter also presents grana; (iv) plasmodesmata are observed between the stalk cell and the bladder cell, and between the epidermal cell and the stalk cell, and ectodesmata-like structures are observed on the bladder cell. Under high salinity conditions, (v) there is a clear tendency to accumulate greater amounts of K+ with respect to Na+ in the bladder cell; (vi) stalk cells accumulate similar amounts of K+ and Na+; (vii) Na+ accumulates mainly in the medullary parenchyma of the stem. These results add knowledge about the structure, content, and role of EBCc under salt stress, and surprisingly present the parenchyma of the stem as the main area of Na+ accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams P, Thomas JC, Vernon DM, Bohnert HJ, Jensen RG (1992) Distinct cellular and organismic responses to salt stress. Plant Cell Physiol 33(8):1215–1223

    CAS  Google Scholar 

  • Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ, Griffiths H (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol 138(2):171–190

    Article  CAS  PubMed  Google Scholar 

  • Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58(8):1957–1967

    Article  CAS  PubMed  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Pantoja O (2012) Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum. Proteomics 12(18):2862–2865

    Article  CAS  PubMed  Google Scholar 

  • Bazihizina N, Böhm J, Messerer M, Stigloher C, Müller HM, Cuin TA, Maierhofer T, Cabot J, Mayer KFX, Fella C, Huang S, Al-Rasheid KAS, Alquraishi S, Breadmore M, Mancuso S, Shabala S, Ache P, Zhang H, Zhu JK, Hedrich R, Scherzer S (2022) Stalk cell polar ion transport provide for bladder-based salinity tolerance in Chenopodium quinoa. New Phytol 235(5):1822–1835

    Article  CAS  PubMed  Google Scholar 

  • Bonales-Alatorre E, Pottosin I, Shabala L, Chen ZH, Zeng F, Jacobsen SE, Shabala S (2013a) Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species, Chenopodium quinoa. Int J Mol Sci 14(5):9267–9285

  • Bonales-Alatorre E, Shabala S, Chen ZH, Pottosin I (2013b) Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiol 162(2):940–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhm J, Messerer M, Müller HM, Scholz-Starke J, Gradogna A, Scherzer S, Maierhofer T, Bazihizina N, Zhang H, Stigloher C, Ache P, Al-Rasheid KAS, Mayer KFX, Shabala S, Carpaneto A, Haberer G, Zhu JK, Hedrich R (2018) Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa. Curr Biol 28(19):3075–3085

    Article  PubMed  Google Scholar 

  • Brizuela M, Montenegro T, Carjuzaa P, Maldonado S (2007) Insolubilization of potassium chloride crystals in Tradescantia pallida. Protoplasma 231(3–4):145–149

    Article  CAS  PubMed  Google Scholar 

  • Eisa S, Hussin S, Geissler N, Koyro HW (2012) Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa (‘Chenopodium quinoa’Willd.) as a potential cash crop halophyte. Aust J Crop Sci 6(2):357–368

    CAS  Google Scholar 

  • Eller CB, Lima AL, Oliveira RS (2013) Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytol 199(1):151–162

    Article  CAS  PubMed  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley

    Book  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37(7):604–612

    Article  Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62(1):185–193

    Article  CAS  PubMed  Google Scholar 

  • Hawes C (1994) Electron microscopy. Plant cell biology. A practical approach. The Practical Approach Series. Oxford: IRL Press at Oxford University Press

  • Hoang BTL, Fletcher SJ, Brosnan CA, Ghodke AB, Manzie N, Mitter N (2022) RNAi as a foliar spray: efficiency and challenges to field applications. Int J Mol Sci 23(12):6639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeschke WD, Stelter W (1983) Ionic relations of garden orache, Atriplex hortensis L.: growth and ion distribution at moderate salinity and the function of bladder hairs. J Exp Bot 34(7):795–810

    Article  CAS  Google Scholar 

  • Jou Y, Wang YL, Yen HE (2007) Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. Funct Plant Biol 34(4):353–359

    Article  CAS  PubMed  Google Scholar 

  • Kiani-Pouya A, Roessner U, Jayasinghe NS, Lutz A, Rupasinghe T, Bazihizina N, Bohm J, Alharbi S, Hendrich R, Shabala S (2017) Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species. Plant Cell Environ 40(9):1900–1915

    Article  CAS  PubMed  Google Scholar 

  • Kramer D (1979) Ultrastructural observations on developing leaf bladder cells of Mesembryanthemum crystallinum L. Flora 168(1–2):193–204

    Article  Google Scholar 

  • LoPresti EF (2014) Chenopod salt bladders deter insect herbivores. Oecologia 174(3):921–930

    Article  CAS  PubMed  Google Scholar 

  • Lüttge U (1971) Structure and function of plant glands. Annu Rev Plant Physiol 22(1):23–44

    Article  Google Scholar 

  • Lüttge U, Fischer E, Steudle E (1978) Membrane potentials and salt distribution in epidermal bladders and photosynthetic tissue of Mesembryanthemum crystallinum L. Plant Cell Environ 1(2):121–129

    Article  Google Scholar 

  • Moog MW, Trinh MDL, Nørrevang AF, Bendtsen AK, Wang C, Østerberg JT, Shabala S, Hedrich R, Wendt T, Palmgren M (2022) The epidermal bladder cell-free mutant of the salt-tolerant quinoa challenges our understanding of halophyte crop salinity tolerance. New Phytol 236(4):1409–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moog MW, Yang X, Bendtsen AK, Dong L, Crocoll C, Imamura T, Mori M, Cushman JC, Kant MR, Palmgren M (2023) Epidermal bladder cells as a herbivore defense mechanism. Curr Biol 33(21):4662–4673

    Article  CAS  PubMed  Google Scholar 

  • Orsini F, Accorsi M, Gianquinto G, Dinelli G, Antognoni F, Carrasco KBR, Martinez EA, Alnayef M, Marotti I, Bosi S, Biondi S (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38(10):818

    Article  CAS  PubMed  Google Scholar 

  • Otterbach S, Khoury H, Rupasinghe T, Mendis H, Kwan K, Lui V, Natera S, Klaiber I, Allen N, Jarvis D, Tester M, Roessner U, Schmöckel S (2021) Characterization of epidermal bladder cells in Chenopodium quinoa. Plant Cell Environ 44(12):3836–3852

    Article  Google Scholar 

  • Prego I, Maldonado S, Otegui M (1998) Seed structure and localization of reserves in Chenopodium quinoa. Ann Bot 82(4):481–488

    Article  Google Scholar 

  • Reimann C, Breckle SW (1988) Salt secretion in some Chenopodium species. Flora 180(3–4):289–296

    Article  Google Scholar 

  • Roman VJ, den Toom LA, Gamiz CC, van der Pijl N, Visser RG, van Loo EN, van der Linden CG (2020) Differential responses to salt stress in ion dynamics, growth and seed yield of European quinoa varieties. Environ Exp Bot 177:104146

    Article  Google Scholar 

  • Rubio F, Nieves-Cordones M, Horie T, Shabala S (2020) Doing ‘business as usual’comes with a cost: evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions. New Phytol 225(3):1097–1104

    Article  CAS  PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  • Schönherr J, Bukovac MJ (1970) Preferential polar pathways in the cuticle and their relationship to ectodesmata. Planta 92(3):189–201

    Article  PubMed  Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in halophytes. In Advances in botanical research (Vol. 57, pp. 151–199). Academic Press

  • Shabala S, Bose J, Hedrich R (2014) Salt bladders: do they matter? Trends Plant Sci 19(11):687–691

    Article  CAS  PubMed  Google Scholar 

  • Sosa-Zuniga V, Brito V, Fuentes F, Steinfort U (2017) Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Ann Appl Biol 171(1):117–124

    Article  Google Scholar 

  • Sun Y, Lindberg S, Shabala L, Morgan S, Shabala S, Jacobsen SE (2017) A comparative analysis of cytosolic Na+ changes under salinity between halophyte quinoa (Chenopodium quinoa) and glycophyte pea (Pisum sativum). Environ Exp Bot 141:154–160

    Article  CAS  Google Scholar 

  • Turcios AE, Papenbrock J, Tränkner M (2021) Potassium, an important element to improve water use efficiency and growth parameters in quinoa (Chenopodium quinoa) under saline conditions. J Agron Crop Sci 207(4):618–630

    Article  CAS  Google Scholar 

  • Van Amstel ANM (1996) A relationship between callose and ectodesmata in epidermal cells of Allium cepa L. Plant Cell Rep 15(9):707–711

    Article  PubMed  Google Scholar 

  • Waigmann E, Zambryski P (2000) Trichome plasmodesmata: a model system for cell-to-cell movement. Adv Bot Res 31:261–283

    Article  Google Scholar 

  • Zhang Y, Mutailifu A, Lan H (2022) Structure, development, and the salt response of salt bladders in Chenopodium album L. Front Plant Sci 13:989946

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Dr. María Victoria Repetto for technical assistance in confocal fluorescence microscopy.

Funding

Funding for this work was provided by grants from the Agencia Nacional de Investigaciones Científicas y Tecnologicas (ANyCT, Argentina) to Sara Maldonado and Hernán Pablo Burrieza (PICT-2015–3527) and University of Buenos Aires (20020170200265BA) to Hernán Pablo Burrieza. María Belén Palacios, Axel Joel Rizzo, and Tatiana Belén Heredia thank the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina, for their fellowships.

Author information

Authors and Affiliations

Authors

Contributions

María Belén Palacios: research design, preparation of biological material, carrying out the main experiments (EBCcs, LM, TEM, ESEM-EDX, CLSM, CRM analysis), statistics and writing. Hernán Pablo Burrieza: original idea, conceptualization, research design, validation, critical supervision of the work, writing and acquisition of funds. Sara Maldonado: original idea, research design and acquisition of funds. Axel Joel Rizzo: technical assistance in microscopy, statistics and writing. Daniel Horacio Murgida: image acquisition and analysis of confocal RAMAN microscopy. Tatiana Belén Heredia: cation quantification. Gonzalo Roqueiro: cation quantification. All authors read and approved the manuscript.

Corresponding author

Correspondence to Hernán Pablo Burrieza.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Peter Nick

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 3085 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios, M.B., Rizzo, A.J., Heredia, T.B. et al. Structure, ultrastructure and cation accumulation in quinoa epidermal bladder cell complex under high saline stress. Protoplasma (2024). https://doi.org/10.1007/s00709-023-01922-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00709-023-01922-x

Keywords

Navigation