Skip to main content
Log in

Comparative bioinformatics analysis and abiotic stress responses of expansin proteins in Cucurbitaceae members: watermelon and melon

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Watermelon and melon are members of the Cucurbitaceae family including economically significant crops in the world. The expansin protein family, which is one of the members of the cell wall, breaks down the non-covalent bonds between cell wall polysaccharides, causing pressure-dependent cell expansion. Comparative bioinformatics and molecular characterization analysis of the expansin protein family were carried out in the watermelon (Citrullus lanatus) and melon (Cucumis melo) plants in the study. Gene expression levels of expansin family members were analyzed in leaf and root tissues of watermelon and melon under ABA, drought, heat, cold, and salt stress conditions by quantitative real-time PCR analysis. After comprehensive searches, 40 expansin proteins (22 ClaEXPA, 14 ClaEXPLA, and 4 ClaEXPB) in watermelon and 43 expansin proteins (19 CmEXPA, 15 CmEXPLA, 3 CmEXPB, and 6 CmEXPLB) in melon were identified. The greatest orthologous genes were identified with soybean expansin genes for watermelon and melon. However, the latest divergence time between orthologous genes was determined with poplar expansin genes for watermelon and melon expansin genes. ClaEXPA-04, ClaEXPA-09, ClaEXPB-01, ClaEXPB-03, and ClaEXPLA-13 genes in watermelon and CmEXPA-12, CmEXPA-10, and CmEXPLA-01 genes in melon can be involved in tissue development and abiotic stress response of the plant. The current study combining bioinformatics and experimental analysis can provide a detailed characterization of the expansin superfamily which has roles in growth and reaction to the stress of the plant. The study ensures detailed data for future studies examining gene functions including the roles in plant growth and stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data will be available on reasonable request.

References

  • Abuqamar S, Ajeb S, Sham A, Enan MR, Iratni R (2013) A mutation in the expansin-like A 2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana. Mol Plant Pathol 14(8):813–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altunoglu YC, Baloglu P, Yer EN, Pekol S, Baloglu MC (2016) Identification and expression analysis of LEA gene family members in cucumber genome. Plant Growth Regul 80(2):225–241

    Article  Google Scholar 

  • Altunoglu YC, Baloglu MC, Baloglu P, Yer EN, Kara S (2017) Genome-wide identification and comparative expression analysis of LEA genes in watermelon and melon genomes. Physiol Mol Biol Plants 23(1):5–21

    Article  Google Scholar 

  • Altunoğlu YÇ, Keleş M, Can TH, Baloğlu MC (2019) Identification of watermelon heat shock protein members and tissue-specific gene expression analysis under combined drought and heat stresses. Turk J Biol 43(6):404–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Arslan B, İncili ÇY, Ulu F et al (2021) Comparative genomic analysis of expansin superfamily gene members in zucchini and cucumber and their expression profiles under different abiotic stresses. Physiol Mol Biol Plants 27(12):2739–2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    CAS  PubMed  Google Scholar 

  • Baloglu MC, Eldem V, Hajyzadeh M, Unver T (2014) Genome-wide analysis of the bZIP transcription factors in cucumber. PLoS One 9(4):e96014. https://doi.org/10.1371/journal.pone.0096014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu A, Sarkar A, Maulik U, Basak P (2019) Three dimensional structure prediction and ligand-protein interaction study of expansin protein ATEXPA23 from Arabidopsis thaliana L. Indian J Biochem Biophys (IJBB) 56(1):20–27

    CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boron AK, Van Loock B, Suslov D, Markakis MN, Verbelen J-P, Vissenberg K (2015) Over-expression of AtEXLA2 alters etiolated Arabidopsis hypocotyl growth. Ann Bot 115(1):67–80

    Article  CAS  PubMed  Google Scholar 

  • Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Shi F (2012) Evolution of the RALF gene family in plants: gene duplication and selection patterns. Evol Bioinform 8:271–292

    Article  CAS  Google Scholar 

  • Caraux G, Pinloche S (2005) PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21(7):1280–1281. https://doi.org/10.1093/bioinformatics/bti141

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Bradford KJ (2000) Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol 124:1265–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14:3237–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi D, Cho HT, Lee Y (2006) Expansins: expanding importance in plant growth and development. Physiol Plant 126(4):511–518

    CAS  Google Scholar 

  • Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 619832https://doi.org/10.1155/2008/619832

  • Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci 94(12):6559–6564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9(7):1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321–326

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol 25:162–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai F, Zhang C, Jiang X et al (2012) RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiol 160:2064–2082. https://doi.org/10.1104/pp.112.207720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(Web Server issue):W155–W159. https://doi.org/10.1093/nar/gkr319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding A, Marowa P, Kong Y (2016) Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum). Mol Genet Genomics 291(5):1891. https://doi.org/10.1007/s00438-016-1226-8

    Article  CAS  PubMed  Google Scholar 

  • Dolferus R (2014) To grow or not to grow: a stressful decision for plants. Plant Sci 229:247–261

    Article  CAS  PubMed  Google Scholar 

  • Duan H, Lu X, Lian C, An Y, Xia X, Yin W (2016) Genome-wide analysis of MicroRNA responses to the phytohormone abscisic acid in Populus euphratica. Front Plant Sci 7:1184

    Article  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2019) https://www.fao.org/faostat/en/#data/QCL/Accessed November 2021.

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR (2016) The Pfam protein families database: towards a more sustainable future. 44(D1), D279-285https://doi.org/10.1093/nar/gkv1344

  • Fukuda H (ed) (2014) Plant cell wall patterning and cell shape. Wiley, Hoboken

    Google Scholar 

  • Gao X, Liu K, Lu YT (2010) Specific roles of AtEXPA1 in plant growth and stress adaptation. Russ J Plant Physiol 57(2):241–46

    Article  CAS  Google Scholar 

  • Gao W, Li D, Fan X, Sun Y, Han B, Wang X, Xu G (2020) Genome-wide identification, characterization, and expression analysis of the expansin gene family in watermelon (Citrullus lanatus). 3 Biotech 10(7):1–20

    Article  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci 109(29):11872–11877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, Springer,pp. 571–607

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29https://doi.org/10.1360/yc-007-1023

  • Guo S, Zhang J, Sun H et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Sun H, Zhang H et al (2015) Comparative transcriptome analysis of cultivated and wild watermelon during fruit development. PLoS One 10(6):e0130267

    Article  PubMed  PubMed Central  Google Scholar 

  • Han YY, Li AX, Li F, Zhao MR, Wang W (2012) Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiol Biochem 54:49–58. https://doi.org/10.1016/j.plaphy.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  • Han Z, Liu Y, Deng X, Liu D, Liu Y, Hu Y, Yan Y (2019) Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). BMC Genomics 20(1):1–19

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular. California agricultural experiment station 347(2nd edit).

  • Hossain MS, Ahmed B, Ullah M, Haque M, Islam M (2021) Genome-wide identification and characterization of expansin genes in jute. Tropical Plant Biology 1–15.

  • Hou L, Zhang Z, Dou S, Zhang Y, Pang X, Li Y (2019) Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Ziziphus jujuba Mill.). Planta 249(3):815–829

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Chen H, Reinfelder JR et al (2019) A transcriptomic (RNA-seq) analysis of genes responsive to both cadmium and arsenic stress in rice root. Sci Total Environ 666:445–460

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Lee HJ, Jung HJ, Maruyama K, Suzuki N, Kang H (2010) Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. Planta 232(6):1447–1454

    Article  CAS  PubMed  Google Scholar 

  • Kong Q, Yuan J, Gao L, Zhao S, Jiang W, Huang Y, Bie Z (2014) Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS One 9(2):e90612

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Data issue):D68-73. https://doi.org/10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Lee DK, Ahn JH, Song SK, Do Choi Y, Lee JS (2003) Expression of an expansin gene is correlated with root elongation in soybean. Plant Physiol 131(3):985–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39(suppl_2):W475–W478. https://doi.org/10.1093/nar/gkr201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Volume II. Water, radiation, salt, and other stresses: Academic Press.

  • Li B, Yin W, Xia X (2009) Identification of microRNAs and their targets from Populus euphratica. Biochem Biophys Res Commun 388:272e277

    Article  Google Scholar 

  • Li H, Dong Y, Chang J et al (2016) High-throughput microRNA and mRNA sequencing reveals that microRNAs may be involved in melatonin-mediated cold tolerance in Citrullus lanatus L. Front Plant Sci 7:1231

    PubMed  PubMed Central  Google Scholar 

  • Li H, Chang J, Zheng J, Dong Y, Liu Q, Yang X, Wei C, Zhang Y, Ma J, Zhang X (2017) Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport. Sci Rep 7(1):40858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL, McQueen-Mason SJ (2002) Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol 128(3):854–864. https://doi.org/10.1104/pp.010658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Xu L, Lin H, Cao J (2021) Two expansin genes, AtEXPA4 and AtEXPB5, are redundantly required for pollen tube growth and AtEXPA4 is involved in primary root elongation in Arabidopsis thaliana. Genes 12(2):249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling J, Jiang W, Zhang Y et al (2011) Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics 12(1):1–20

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Lu PT, Kang M, Jiang XQ, Dai FW, Gao JP, Zhang CQ (2013) RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 237:1547–1559. https://doi.org/10.1007/s00425-013-1867-3

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Liu L, Wang X, Han Z, Ouyang B, Zhang J, Li H (2016) Genome-wide identification and expression analysis of the expansin gene family in tomato. Mol Genet Genomics 291(2):597–608

    Article  CAS  PubMed  Google Scholar 

  • Lv LM, Zuo DY, Wang XF et al (2020) Genome-wide identification of the expansin gene family reveals that expansin genes are involved in fibre cell growth in cotton. BMC Plant Biol 20:1–13

    Article  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls (analysis of wall hydrolysis, stress relaxation, and binding). Plant Physiol 107(1):87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo Y, Yang R, Liu L et al (2016) Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Regul 79(2):229–241

    Article  CAS  Google Scholar 

  • Öztürk NZ (2015) Literature review and new approaches on plant drought stress response. Turk J Agric Food Sci Technol 3(5):307–315

    Google Scholar 

  • Qin Z, Chen J, Jin L, Duns GJ, Ouyang P (2015) Differential expression of miRNAs under salt stress in Spartina alterniflora leaf tissues. J Nanosci Nanotechnol 15(2):1554–1561

    Article  CAS  PubMed  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(Web Server):W116–W120. https://doi.org/10.1093/nar/gki442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt D, Wittwer F, Mandel T, Kuhlemeier C (1998) Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell 10:1427–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6(12):1–11

    Article  Google Scholar 

  • Sampedro J, Guttman M, Li LC, Cosgrove DJ (2015) Evolutionary divergence of β–expansin structure and function in grasses parallels emergence of distinctive primary cell wall traits. Plant J 81(1):108–120

    Article  CAS  PubMed  Google Scholar 

  • Santiago TR, Pereira VM, de Souza WR et al (2018) Genome-wide identification, characterization and expression profile analysis of expansins gene family in sugarcane (Saccharum spp.). PloS one 13(1):e0191081

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanz-Carbonell A, Marques MC, Bustamante A, Fares MA, Rodrigo G, Gomez G (2019) Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon. BMC Plant Biol 19(1):1–17

    Article  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin AY, Kim YM, Koo N, Lee SM, Nahm S, Kwon SY (2017) Transcriptome analysis of the oriental melon (Cucumis melo L. var. makuwa) during fruit development. PeerJ 5:e2834

    Article  PubMed  PubMed Central  Google Scholar 

  • Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7(1):539

    Article  PubMed  PubMed Central  Google Scholar 

  • Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34(Web Server issue):W609-612. https://doi.org/10.1093/nar/gkl315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ünel NM (2018) Bioinformatics analysis of cucumber heat shock proteins and investigation of response to abiotic stress conditions by using omics approaches (Master’s thesis, Kastamonu University, Institute of Science and Technology).

  • Unel NM, Cetin F, Karaca Y, Altunoglu YC, Baloglu MC (2019) Comparative identification, characterization, and expression analysis of bZIP gene family members in watermelon and melon genomes. Plant Growth Regul 87(2):227–243

    Article  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. https://doi.org/10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Wu M, Yan L, Hu R, Ali I, Gan Y (2014) AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS One 9:e85208

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Gu S, Wang X, Li W, Tang Z, Xu C (2008) Molecular evolution of the CPP-like gene family in plants: insights from comparative genomics of Arabidopsis and rice. J Mol Evol 67(3):266–277. https://doi.org/10.1007/s00239-008-9143-z

    Article  CAS  PubMed  Google Scholar 

  • Yeşil S (2019) Some virus diseases of edible seed squash (Cucurbita pepo L.) in Aksaray Province, Turkey. Yuzuncu Yıl Univ J Agric Sci 29(Special issue):63–71

    Google Scholar 

  • Zhang W, Yan H, Chen W et al (2014) Genome-wide identification and characterization of maize expansin genes expressed in endosperm. Mol Genet Genomics 289(6):1061–1074. https://doi.org/10.1007/s00438-014-0867-8

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2005) miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 33(suppl_2):W701–W704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, Hu Y (2014) Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol 14(1):1–19

    Article  Google Scholar 

  • Zhu YC, Sun DX, Yun DENG et al (2020) Comparative transcriptome analysis of the effect of different heat shock periods on the unfertilized ovule in watermelon (Citrullus lanatus). J Integr Agric 19(2):528–540

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK), Project no: 119Z018.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. Planned and designed the research: YCA and MCB; performed experiments: ÇYI, BA, ENYÇ, FU, EH, EÇ, and GB; analyzed data: AUB, YCA, and FU; wrote and edited the manuscript: YCA, ÇYI, and MCB. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yasemin Celik Altunoglu.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate and for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Peter Nick

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 8369 KB)

Supplementary file2 (PDF 2193 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İncili, Ç.Y., Arslan, B., Çelik, E.N.Y. et al. Comparative bioinformatics analysis and abiotic stress responses of expansin proteins in Cucurbitaceae members: watermelon and melon. Protoplasma 260, 509–527 (2023). https://doi.org/10.1007/s00709-022-01793-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-022-01793-8

Keywords

Navigation