Skip to main content
Log in

Chromosomal localization of 45S rDNA, sex-specific C values, and heterochromatin distribution in Coccinia grandis (L.) Voigt

  • Short Communication
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Coccinia grandis is a widely distributed dioecious cucurbit in India, with heteromorphic sex chromosomes and X-Y sex determination mode. The present study aids in the cytogenetic characterization of four native populations of this plant employing distribution patterns of 45S rDNA on chromosomes and guanine-cytosine (GC)-rich heterochromatin in the genome coupled with flow cytometric determination of genome sizes. Existence of four nucleolar chromosomes could be confirmed by the presence of four telomeric 45S rDNA signals in both male and female plants. All four 45S rDNA sites are rich in heterochromatin evident from the co-localization of telomeric chromomycin A (CMA)+ve signals. The size of 45S rDNA signal was found to differ between the homologues of one nucleolar chromosome pair. The distribution of heterochromatin is found to differ among the male and female populations. The average GC-rich heterochromatin content of male and female populations is 23.27 and 29.86 %, respectively. Moreover, the male plants have a genome size of 0.92 pg/2C while the female plants have a size of 0.73 pg/2C, reflecting a huge genomic divergence between the genders. The great variation in genome size is owing to the presence of Y chromosome in the male populations, playing a multifaceted role in sexual divergence in C. grandis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Barker RF, Harberd NP, Jarvis MG, Flavell RB (1988) Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of wheat. J Mol Biol 201:1–17

    Article  PubMed  CAS  Google Scholar 

  • Bergero R, Forrest A, Charlesworth D (2008) Active miniature transposons from a plant genome and its nonrecombining Y chromosome. Genetics 178:1085–1092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhaduri PN, Bose PC (1947) Cytogenetical investigations in some common cucurbits, with special reference to fragmentation of chromosomes as a physical basis of speciation. J Genet 48:237–256

    Article  PubMed  CAS  Google Scholar 

  • Bhowmick BK, Jha TB, Jha S (2012) Chromosome analysis in the dioecious cucurbit Coccinia grandis (L.) Voigt. Chromosom Sci 15:9–15

    CAS  Google Scholar 

  • Bhowmick BK, Nanda S, Nayak S, Jha S, Joshi RK (2014) An APETALA3 MADS-box linked SCAR marker associated with male specific sex expression in Coccinia grandis (L). Voigt. Sci Hortic 176:85–90

    Article  CAS  Google Scholar 

  • Bi K, Bogart JP, Fu J (2009) A populational survey of 45S rDNA polymorphism in the Jefferson salamander Ambystoma jeffersonianum revealed by fluorescence in situ hybridization (FISH). Curr Zool 55(2):145–149

    CAS  Google Scholar 

  • Błocka-Wandas M, Sliwinska E, Grabowska-Joachimiak A, Musial K, Joachimiak AJ (2007) Male gametophyte development and two different DNA classes of pollen grains in Rumex acetosa L., a plant with an XX/XY1Y2 sex chromosome system and a female-biased sex ratio. Sex Plant Reprod 20:171–180

    Article  CAS  Google Scholar 

  • Caperta AD, Neves N, Morais-Cecilio L et al (2002) Genome restructuring in rye affects the expression, organization and disposition of homologous rDNA loci. J Cell Sci 115:2839–2846

    PubMed  CAS  Google Scholar 

  • Chakravorti AK (1948) Cytology of Coccinia indica W. & A. with reference to the behaviour of its sex-chromosomes. Proc Plant Sci 27(3):74–86

    Google Scholar 

  • Chattopadhyay D, Sharma AK (1991) Sex determination in dioecious species of plants. Feddes Repert 102(1–2):29–55

    Google Scholar 

  • Chen JF, Staub JE, Jiang J (1998) A re-evaluation of karyotype in cucumber (Cucumis sativus L.). Genet Resour Crop Evol 45:301–305

    Article  Google Scholar 

  • Cheng BF, Heneen WK (1995) Satellited chromosomes, nucleolus organizer regions and nucleoli of Brassica campestris L., B. nigra (L.) Koch, and Sinapis arvensis L. Hereditas 122:113–118

    Article  Google Scholar 

  • D’Cruz R, Vyahalkar GR, Ugale SD (1972) Cytogenetic studies in tetraploid Coccinia indica W. and A. Caryologia 25(4):505–512

    Article  Google Scholar 

  • Deng CL, Qin R, Gao J et al (2012) Identification of sex chromosome of spinach by physical mapping of 45S rDNAs by FISH. Caryologia 65(4):322–327

    Article  Google Scholar 

  • Doležel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51A:127–128

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  CAS  Google Scholar 

  • Eriksson S, Kim SK, Kubista M, Nordtn B (1993) Binding of 4′,6-Diamidino-2-phenylindole (DAPI) to AT regions of DNA: evidence for an allosteric conformational change. Biochemistry 32:2987–2998

    Article  PubMed  CAS  Google Scholar 

  • Fukui K (1996) Plant chromosomes at mitosis. In: Fukui K, Nakayama S (eds) Plant chromosomes: laboratory methods. CRC press Inc, Boca Raton, pp 1–17

    Google Scholar 

  • Gaiero P, Mazzella C, Vaio M et al (2012) An unusually high heterochromatin content and large genome size in the palm tree Trithrinax campestris (Arecaceae). Aust J Bot 60(4):378–382

    Article  CAS  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220(4601):1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghadge AG, Karmakar K, Devani RS et al (2014) Flower development, pollen fertility and sex expression analyses of three sexual phenotypes of Coccinia grandis. BMC Plant Biol 14:325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grabowska-Joachimiak A, Kula A, Książczyk T, Chojnicka J, Sliwinska E, Joachimiak AJ (2014) Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1 Y2 sex chromosome system. Chromosom Res. doi:10.1007/s10577-014-9446-4

    Google Scholar 

  • Guerra M, Santos KGB, Barros e Silva AE, Ehrendorfer F (2000) Heterochromatin banding patterns in Rutaceae–Aurantioideae—a case of parallel chromosomal evolution. Am J Bot 87:735–747

    Article  PubMed  CAS  Google Scholar 

  • Guha A, Sinha RK, Sinha S (2004) Average packing ratio as a parameter for analyzing the karyotypes of dioecious cucurbits. Caryologia 57(1):117–120

    Article  Google Scholar 

  • Han Y, Zhang Z, Liu JH, Lu JY, Huang SW, Jin WW (2008) Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization. Cytogenet Genome Res 122:80–88

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS (P), Schwarzacher T (2011) The plant genome: an evolutionary view on structure and function: organisation of the plant genome in chromosomes. Plant J 66:18–33

    Article  PubMed  CAS  Google Scholar 

  • Holstein N, Renner SS (2011) A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae). BMC Evol Biol 11:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamilena M, Mariotti B, Manzano S (2008) Plant sex chromosomes: molecular structure and function. Cytogenet Genome Res 120:255–264

    Article  PubMed  CAS  Google Scholar 

  • Jha TB, Yamamoto M (2012) Application of EMA, fluorescence staining and FISH of rDNA in analysis of Aloe vera (L.) Burm. f. chromosomes. Bull Fac Agric Kagoshima Univ 62:83–89

    Google Scholar 

  • Koo DH, Hur Y, Jin DC, Bang JW (2002) Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Mol Cells 13(3):413–418

    PubMed  CAS  Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876

    Article  Google Scholar 

  • Kumar LSS, Viseveshwaraiah S (1952) Sex mechanism in Coccinia indica Wight and Arn. Nature 170:330–331

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Kumari R, Sharma V (2014) Genetics of dioecy and causal sex chromosomes in plants. J Genet 93:241–277

    Article  PubMed  Google Scholar 

  • Lan T, Zhang S, Liu B, Li X, Chen R, Song W (2006) Differentiating sex chromosomes of the dioecious Spinacia oleracea L. (spinach) by FISH of 45S rDNA. Cytogenet Genome Res 114(2):175–177

    Article  PubMed  CAS  Google Scholar 

  • Lengerova M, Kejnovsky E, Hobza R, Macas J, Grant SR, Vyskot B (2004) Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theor Appl Genet 108:1193–1199

    Article  PubMed  CAS  Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52(2):201–220

    Article  Google Scholar 

  • Lohe AR, Roberts PA (1990) An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rRNA genes. Genetics 125:399–406

    PubMed  PubMed Central  CAS  Google Scholar 

  • Manzini G, Xodo L, Barcellona ML, Quadrifoglio F (1985) Interaction of 4′-6-diamidino-2-phenylindole 2HCl with synthetic and natural deoxy- and ribonucleic acids. Proc Int Symp Biomol Struct Interact Suppl J Biosci 8(3 & 4):699–711

    CAS  Google Scholar 

  • Mariotti B, Manzano S, Kejnovský E, Vyskot B, Jamilena M (2009) Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol Genet Genomics 281:249–259

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514

    Article  PubMed  CAS  Google Scholar 

  • Moscone EA, Lambrou M, Ehrendorfer F (1996) Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant Syst Evol 202:37–63

    Article  Google Scholar 

  • Nakayama S, Fujishita M, Sone T, Ohyama K (2001) Additional locus of rDNA sequence specific to the X chromosome of the liverwort. Marchantia polymorpha. Chromosom Res 9(6):469–473

    Article  CAS  Google Scholar 

  • Nath S, Jha TB, Mallick SK, Jha S (2014) Karyological relationships in Indian species of Drimia based on fluorescent chromosome banding and nuclear DNA amount. Protoplasma. doi:10.1007/s00709-014-0679-z

    PubMed  Google Scholar 

  • Novotná J, Havelka J, Starý P, Koutecký P, Vītková M (2011) Karyotype analysis of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) reveals a large X chromosome with rRNA and histone gene families. Genetica 139(3):281–289

    Article  PubMed  Google Scholar 

  • Ohmido N, Fukui K (1996) A new manual for fluorescence in situ hybridization (FISH) in plant chromosomes. Rice Genet Newsl 13:89–93

    Google Scholar 

  • Paszko B (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Syst Evol 258:39–48

    Article  Google Scholar 

  • Pizzaia D, Oliveira VM, Martins AR, Appezzato-da-Glória B, Forni-Martins E, Aguiar-Perecin MLR (2013) Karyotype characterization reveals active 45S rDNA sites located on chromosome termini in Smilax rufescens (Smilacaceae). Genet Mol Res 12(2):1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Zhang Z, Liu J et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. Plos One 4(6):1–8

    Article  Google Scholar 

  • Renner SS, Pandey AK (2013) The Cucurbitaceae of India: accepted names, synonyms, geographic distribution and information on images and DNA sequences. PhytoKeys 20:53–118

    Article  PubMed  Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58(4):307–324

    Article  PubMed  CAS  Google Scholar 

  • Siroky J, Lysak MA, Doležel J, Kejnovsky E, Vyskot B (2001) Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosom Res 9:387–393

    Article  CAS  Google Scholar 

  • Sivaraj A, Preethi Jenifa B, Kavitha M, Inbasekar P, Senthilkumar B, Panneerselvam A (2011) Antibacterial activity of Coccinia grandis leaf extract on selective bacterial strains. J Appl Pharm Sci 1(7):120–123

    Google Scholar 

  • Sousa A, Fuchs J, Renner SS (2013) Molecular cytogenetics (FISH, GISH) of Coccinia grandis: a ca. 3 myr-old species of cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet Genome Res 139(2):107–118

    Article  PubMed  CAS  Google Scholar 

  • Stack S, Herickhoff L, Sherman J, Anderson L (1991) Staining plant cells with silver. I. The salt-nylon technique. Biotech Histochem 1:69–78

    Article  PubMed  CAS  Google Scholar 

  • Stebbins GL (1971) Chromosomal changes, genetic recombination and speciation. In: Barrington EJW, Willis AJ (eds) Chromosomal evolution in higher plants. Edward Arnold Publishers Pvt. Ltd., London, pp 72–123

    Google Scholar 

  • Sutradhar BK, Islam MJ, Shoyeb MA et al (2011) An evaluation of antihyperglycemic and antinociceptive effects of crude methanol extract of Coccinia grandis (L.) J. Voigt. (Cucurbitaceae) leaves in swiss albino mice. Adv Nat Appl Sci 5(1):1–5

    Google Scholar 

  • Takehana Y, Naruse K, Asada Y et al (2012) Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the W chromosomes of medaka fishes. Chromosom Res 20(1):71–81

    Article  CAS  Google Scholar 

  • Vasconcelos S, Souza AA, Gusmão CL, Milani M, Benko-Iseppon AM, Brasileiro-Vidal AC (2010) Heterochromatin and rDNA 5S and 45S sites as reliable cytogenetic markers for castor bean (Ricinus communis, Euphorbiaceae). Micron 41:746–753

    Article  PubMed  CAS  Google Scholar 

  • Waminal NE, Kim HH (2012) Dual-color FISH Karyotype and rDNA distribution analyses on four Cucurbitaceae species. Hortic Environ Biotechnol 53(1):49–56

    Article  Google Scholar 

  • Whitaker TW (1933) Cytological and phylogenetic studies in the Cucurbitaceae. Bot Gaz 94:780–790

    Article  Google Scholar 

  • Xiang-Hui J (2011) Karyotype analysis of three Solanum plants using combined PI-DAPI staining and double fluorescence in situ hybridization with 45S and 5S rDNA probes. Afr J Biotechnol 10(82):18948–18957

    Google Scholar 

  • Xu YH, Yang F, Cheng YL, Ma L, Wang JB, Li LJ (2007) Comparative analysis of rDNA distribution in metaphase chromosomes of Cucurbitaceae species. Hereditas (Beijing) 29:614–620

    Article  CAS  Google Scholar 

  • Yamamoto M, Terakami S, Yamamoto T, Takada N, Kubo T, Tominaga S (2010) Detection of the ribosomal RNA gene in pear (Pyrus spp.) using fluorescence in situ hybridization. Jpn Soc Hortic Sci 79:335–339

    Article  Google Scholar 

  • Zarco CR (1986) A new method for estimating karyotype asymmetry. Taxon 35(3):526–530

    Article  Google Scholar 

  • Zhao X, Lu J, Zhang Z, Hu J, Huang S, Jin WW (2011) Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. J Genet Genom 38:39–45

    Article  Google Scholar 

Download references

Acknowledgments

BKB is thankful to Department of Science and Technology, Govt. of India, for the award of INSPIRE Fellowship. We are grateful to Drs. T. Yamamoto and S. Terakami of the National Institute of Fruit Tree Science, Japan for providing rDNA fragment for FISH. We thank Prof. Jaroslav Doležel, Institute of Experimental Botany, Olomouc, Czech Republic for the provision of seeds for reference standard. BKB expresses sincere gratitude to Prof. Timir Baran Jha for his help and guidance in fluorescence banding technique. We also thank CU- BD CoE for Nanobiotechnology, CRNN, University of Calcutta for instrument facilities. Financial assistance from Department of Biotechnology (GOI, Sanction No BT/ PR3919/PBD/16/959/2011) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Jha.

Additional information

Handling Editor: Peter Nick

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Propidium iodide fluorescence intensity- area (PI- A) histograms of (a) C. grandis male plant of Population I with internal standard Zea mays CE-777 (b) C. grandis female plant of Population I with internal standard Zea mays CE-777 (c) C. grandis male plant of Population II with internal standard Zea mays CE-777 (d) C. grandis female plant of Population II with internal standard Zea mays CE-777 (e) C. grandis male plant of Population III with internal standard Zea mays CE-777 (f) C. grandis female plant of Population III with internal standard Zea mays CE-777 (g) C. grandis male plant of Population IV with internal standard Zea mays CE-777 and (h) C. grandis female plant of Population IV with internal standard Zea mays CE-777. Abbreviation: Mean FL- Mean fluorescence intensity (GIF 125 kb)

High resolution image (TIFF 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmick, B.K., Yamamoto, M. & Jha, S. Chromosomal localization of 45S rDNA, sex-specific C values, and heterochromatin distribution in Coccinia grandis (L.) Voigt. Protoplasma 253, 201–209 (2016). https://doi.org/10.1007/s00709-015-0797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0797-2

Keywords

Navigation