Skip to main content
Log in

Ectopic overexpression of vacuolar and apoplastic Catharanthus roseus peroxidases confers differential tolerance to salt and dehydration stress in transgenic tobacco

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

CrPrx and CrPrx1 are class III peroxidases previously cloned and characterized from Catharanthus roseus. CrPrx is known to be apoplastic in nature, while CrPrx1 is targeted to vacuoles. In order to study their role in planta, these two peroxidases were expressed in Nicotiana tabacum. The transformed plants exhibited increased peroxidase activity. Increased oxidative stress tolerance was also observed in transgenics when treated with H2O2 under strong light conditions. However, differential tolerance to salt and dehydration stress was observed during germination of T1 transgenic seeds. Under these stresses, the seed germination of CrPrx-transformed plants and wild-type plants was clearly suppressed, whereas CrPrx1 transgenic lines showed improved germination. CrPrx-transformed lines exhibited better cold tolerance than CrPrx1-transformed lines. These results indicate that vacuolar peroxidase plays an important role in salt and dehydration stress over cell wall-targeted peroxidase, while cell wall-targeted peroxidase renders cold stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amako K, Chen G-X, Asada K (1994) Separate assay specific for ascorbate peroxidase and guaiacol peroxidase and for chloroplastic and cytosolic isoenzymes of ascorbate peroxidase in plants. Plant Cell Physiol 35:497–504

    CAS  Google Scholar 

  • Blee KA, Jupe SC, Richard G, Zimmerlin A, Davies DR, Bolwell GP (2001) Molecular identification and expression of the peroxidase responsible for the oxidative burst in French bean (Phaseolus vulgaris L.) and related members of the gene family. Plant Mol Biol 47:607–620

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Costa MMR, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barcelo AR, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417

    Article  PubMed  CAS  Google Scholar 

  • Di Fiore S, Li Q, Leech MJ, Schuster F, Emans N, Fischer R, Schillberg S (2002) Targeting tryptophan decarboxylase to selected subcellular compartments of tobacco plants affects enzyme stability and in vivo function and leads to a lesion-mimic phenotype. Plant Physiol 129(3):1160–1169

    Article  PubMed  Google Scholar 

  • Díaz J, Pomar F, Bernal A, Merino F (2004) Peroxidases and the metabolism of capsaicin in Capsicum annuum L. Phytochem Rev 3:141–157

    Article  Google Scholar 

  • Duroux L, Welinder KG (2003) The peroxidase gene family in plants: a physiological overview. J Mol Evol 57:397–407

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB, Schilperoort RA (1994) Plant molecular biology manual. Kluwer, Dordrecht

    Google Scholar 

  • Griffith M, Lumb C, Wiseman SB, Wisniewski M, Johnson RW, Marangoni AG (2005) Antifreeze proteins modify the freezing process in planta. Plant Physiol 138:330–340

    Article  PubMed  CAS  Google Scholar 

  • Hinman RL, Lang J (1965) Peroxidase-catalyzed oxidation of indole-3-acetic acid. Biochemistry 4:144–158

    Article  PubMed  CAS  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    Article  PubMed  CAS  Google Scholar 

  • Jana S, Choudhuri MA (1982) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aqua Bot 12:345–354

    Article  CAS  Google Scholar 

  • Kalir A (1981) Changes in activity of malate-dehydrogenase, catalase, peroxidase and superoxide dismutase in leaves of Helimione portulacoides (L.) Allen exposed to high sodium chloride concentrations. Ann Bot 47:75–85

    CAS  Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462

    Article  PubMed  CAS  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    PubMed  CAS  Google Scholar 

  • Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Over expression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867–881

    Article  PubMed  CAS  Google Scholar 

  • Koua D, Cerutti L, Falquet L, Sigrist CJA, Theiler G, Hulo N, Dunand C (2009) PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 37:D261–D226

    Article  Google Scholar 

  • Kristensen BK, Burhenne K, Rasmussen SK (2004) Peroxidases and the metabolism of hydroxycinnamic acid amides in Poaceae. Phytochem Rev 3:127–140

    Article  CAS  Google Scholar 

  • Kumar S, Dutta A, Sinha AK, Sen J (2007) Cloning, characterization and localization of a novel basic peroxidase gene from Catharanthus roseus. FEBS J 274:1290–1303

    Article  PubMed  CAS  Google Scholar 

  • Lessard PA, Kulaveerasingam H, York GM, Strong A, Sinskey AJ (2002) Manipulating gene expression for the metabolic engineering of plants. Metab Eng 4:67–79

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Sheng X, Greenshields DL, Ogieglo A, Kaminskyj S, Selvaraj G, Wei Y (2005) Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns. Mol Plant Microb Interact 18:730–741

    Article  CAS  Google Scholar 

  • Llorente F, Lopez-Cobollo RM, Catala R, Martinez-Zapater JM, Salinas J (2002) A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J 32:13–24

    Article  PubMed  CAS  Google Scholar 

  • Matzke M, Matzke AJM, Kooter JM (2001) RNA: guiding gene silencing. Science 293:1080–1083

    Article  PubMed  CAS  Google Scholar 

  • Meyer P (1995) Understanding and controlling transgene expression. Trends Biotechnol 13:332–337

    Article  CAS  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101:6309–6314

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen RA (1990) Introduction of a chimeric chalcone synthase gene in petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed  CAS  Google Scholar 

  • Oliva M, Theiler G, Zamocky M, Koua D, Margis-Pinheiro M, Passardi F, Dunand C (2009) PeroxiBase: a powerful tool to collect and analyse peroxidase sequences from Viridiplantae. J Exp Bot 60:453–459

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Ryu SH, Kwon SY, Lee HS, Kim GK, Kwak SS (2003) Differential expression of six novel peroxidase cDNAs from cell cultures of sweet potato on response to stress. Mol Genet Genomics 269:542–552

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65:1879–1893

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  PubMed  CAS  Google Scholar 

  • Pastori GM, Trippi VS (1992) Oxidative stress induces high rate of glutathione reductase synthesis in a drought resistant maize strain. Plant Cell Physiol 33:957–961

    CAS  Google Scholar 

  • Radić S, Radić-Stojković M, Pevalek-Kozlina B (2006) Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. J Plant Physiol 163:1284–1292

    Article  PubMed  Google Scholar 

  • Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, Schatz PF, Grabber JH, Steinhart H (2004) Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Rev 3:79–96

    Article  CAS  Google Scholar 

  • Ros Barceló A, Muňoz R (2000) Metabolic plasticity of plant peroxidases. In: Hemantarajanjan A (ed) Advances in plant physiology. Scientific Publishers, India, pp 71–92

    Google Scholar 

  • Ros Barceló A, Gómez Ros L, Gabaldón C, López-Serrano M, Pomar F, Carrión JS, Pedreño MA (2004) Basic peroxidases: the gateway for lignin evolution. Phytochem Rev 3:61–78

    Article  Google Scholar 

  • Sairam RK, Deshmukh PS, Shukla DS (1997) Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J Agron Crop Sci 178:171–177

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sottomayor M, Ros Barceló A (2003) Peroxidase from Catharanthus roseus (L.) G. Don and the biosynthesis of α-3′, 4′-anhydrovinblastine: a specific role for a multifunctional enzyme. Protoplasma 222:97–105

    Article  PubMed  CAS  Google Scholar 

  • Sottomayor M, de Pinto MC, Salema R, DiCosmo F, Pedreño MA, Ros Barceló A (1996) The vacuolar localization of a basic peroxidase isoenzyme responsible for the synthesis of α-3′,4′-anhydrovinblastine in Catharanthus roseus (L) G. Don leaves. Plant Cell Environ 19:761–767

    Article  CAS  Google Scholar 

  • Sottomayor M, López-Serrano M, DiCosmo F, Ros Barceló A (1998) Purification and characterization of alpha-3′,4′-anhydrovinblastine synthase (peroxidase-like) from Catharanthus roseus (L.) G. Don. FEBS Lett 428:299–303

    Article  PubMed  CAS  Google Scholar 

  • Sottomayor M, Cardoso IL, Pereira LG, Ros Barceló A (2004) Peroxidase and the biosynthesis of terpenoid indole alkaloids in the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem Rev 3:159–171

    Article  CAS  Google Scholar 

  • Stam M, Mol J, Kooter J (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  • Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138

    Article  PubMed  CAS  Google Scholar 

  • Van Huystee RB, Roi MG, Shnyrov VL, Sakharov IY (2004) Peroxidase stability related to its calcium and glycans. Phytochem Rev 3:19–28

    Article  Google Scholar 

  • Vance V, Vaucheret H (2001) RNA silencing in plants—defense and counter defense. Science 292:2277–2280

    Article  PubMed  CAS  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    Article  CAS  Google Scholar 

  • Welinder KG, Justesen AF, Kjærsgåd IVH, Jensen RB, Rasmussen SK, Jespersen HM, Duroux L (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269:6063–6081

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

SK and MJ thank Council of Scientific and Industrial Research, India for providing fellowship. The authors thank Dr. Rekha Kushwaha for assisting in statistical analysis. This work is supported by the core grant of the National Institute of Plant Genome Research, New Delhi, India.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Krishna Sinha.

Additional information

Handling Editor: Friedrich W. Bentrup

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Jaggi, M. & Sinha, A.K. Ectopic overexpression of vacuolar and apoplastic Catharanthus roseus peroxidases confers differential tolerance to salt and dehydration stress in transgenic tobacco. Protoplasma 249, 423–432 (2012). https://doi.org/10.1007/s00709-011-0294-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0294-1

Keywords

Navigation