Skip to main content
Log in

Laticiferous canal formation in fruits of Decaisnea fargesii: a programmed cell death process?

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Programmed cell death (PCD), a topic of abiding interest, remodels plants at the cell, tissue, and organ levels involving various developmental processes of plants. The aim of this study is to provide a morphological characterization of evidence of PCD involvement in the laticiferous canal formation in fruit of Decaisnea fargesii. Several ultrastructural features of PCD have been observed including disintegration of vacuole and plasma membranes, cell wall degeneration, degenerated cytoplasm, abundant membrane structures and flocculent material, mitochondria and misshapen nuclei coupled with degraded plastids in vacuoles, and nuclei enveloped by rubber granule. In D. fargesii, the nuclei of the secretory epidermal cells become TUNEL-positive from the sunken stage to the late expanding stage, then DAPI-negative during the mature stage, indicating an early event of deoxyribonucleic acid (DNA) cleavage and a late event of complete DNA degeneration. Gel electrophoresis indicates that DNA cleavage is random and does not result in the laddering pattern indicating multiples of internucleosomal units. During the PCD of secretory epidermal cells, the rubber granules continue to be synthesized and accumulated in the secretory epidermal cells despite nuclear degradation. The PCD’s role in laticiferous canal formation suggests that PCD may play important roles in gland development of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PCD:

programmed cell death

TUNEL:

terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling

References

  • Belmonte E, Cardemil L, Kalin Arroyo MT (1994) Floral nectary structure and nectar composition in Eccremocarpus scaber (Bignoniaceae), a hummingbird pollinated plant of central Chile. Am J Bot 81:493–503

    Article  Google Scholar 

  • Carr DJ, Carr SGM (1970) Oil glands and ducts in Eucalyptus L`Herit. II. Development and structure of oil glands in the embryo. Austral J Bot 18:191–212

    Article  Google Scholar 

  • Courtois-Moreau CL, Pesquet E, Sjödin A, Muniz L, Bollhöner B, Kaneda M, Samuels L, Jansson S, Tuominen H (2009) A unique program for cell death in xylem fibers of Populus stem. Plant J 58:260–274

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Thomas H (2000) Senescence and programmed cell death. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, pp 1044–1100

    Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy, 3rd edn. Wiley, Hoboken, pp 455–462

    Book  Google Scholar 

  • Fukuda H (2000) Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol Biol 44:245–253

    Article  PubMed  CAS  Google Scholar 

  • Gaffal KP, Friedrichs GJ, El-Gammal S (2007) Ultrastructural evidence for a dual function of the phloem and programmed cell death in the floral nectary of Digitalis purpurea. Ann Bot 99:593–607

    Article  PubMed  Google Scholar 

  • Galetto L (1995) Nectary structure and nectar characteristics in some Bignoniaceae. Pl Syst Evol 196:99–121

    Article  Google Scholar 

  • Gibbons IR, Grimstone AV (1960) On the flagellate structure in certain flagellates. J Biophys Biochem Cytol 7:697–716

    Article  PubMed  CAS  Google Scholar 

  • Groover A, Jones AM (1999) Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol 119:375–384

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena AH, Pearce DM, Jackson MB, Hawes CR, Evans DE (2001) Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta 212:205–214

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena A, Greenwood JS, Dengler N (2004) Programmed cell death remodels lace plant leaf shape during development. Plant Cell 16:70–73

    Article  Google Scholar 

  • Gunawardena AH, Sault K, Donnelly P, Greenwood JS, Dengler NG (2005) Programmed cell death and leaf morphogenesis in Monstera obliqua (Araceae). Planta 221:607–618

    Article  PubMed  CAS  Google Scholar 

  • Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Plant Sci 13:631–639

    Article  PubMed  CAS  Google Scholar 

  • Horner HT, Healy RA, Cervantes-Martinez T, Palmer RG (2003) Floral nectary fine structure and development in Glycine max L. (Fabaceae). Int J Plant Sci 164:675–690

    Article  Google Scholar 

  • Hu ZH (1963) Studies on the structure and the ontogeny of laticiferous canals of Decaisnea fargesii Franch. Acta Bot Sin 11:129–140

    Google Scholar 

  • Huang BQ, Strout WG, Russell SD (1993) Fertilization in Nicotiana tabacum—ultrastructural organization of propane—jet-frozen embryo sacs in-vivo. Planta 191:256–264

    Article  Google Scholar 

  • Jones AM (2001) Programmed cell death in development and defense. Plant Physiol 125:94–97

    Article  PubMed  CAS  Google Scholar 

  • Kozela C, Regan S (2003) How plants make tubes. Trends Plant Sci 8:159–164

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy KV, Krishnaraj R, Chozhavendan R, Christopher FS (2000) The programme of cell death in plants and animals—a comparison. Curr Sci 79:1169–1181

    CAS  Google Scholar 

  • Kronestedt EC, Robards AW, Strak M, Olesen P (1986) Development of trichomes in the Abutilon nectary gland. Nord J Bot 6:627–639

    Article  Google Scholar 

  • Liu WZ, Zhou YF, Wang X, Jiao ZJ (2010) Programmed cell death during pigment gland formation in Gossypium hirsutum leaves. Plant Biol 12:895–902

    Article  PubMed  CAS  Google Scholar 

  • Mastroberti AA, de Araujo Mariath JE (2008) Development of mucilage cells of Araucaria angustifolia (Araucariaceae). Protoplasma 232:233–245

    Article  PubMed  CAS  Google Scholar 

  • Monacelli B, Valletta A, Rascio N, Moro I, Pasqua G (2005) Laticifers in Camptotheca acuminata Decne: distribution and structure. Protoplasma 226:155–161

    Article  PubMed  Google Scholar 

  • O’Brien SP, Loveys BR, Grant WJR (1996) Ultrastructure and function of floral nectaries of Chamelaucium uncinatum (Myrtaceae). Ann Bot 78:189–196

    Article  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  • Roberts K, McCann MC (2000) Xylogenesis: the birth of a corpse. Curr Opin Plant Biol 3:517–522

    Article  PubMed  CAS  Google Scholar 

  • Robinson DG, Galili G, Herman E, Hillmer S (1998) Topical aspects of vacuolar protein transport: autophagy and prevacuolar compartments. J Exp Bot 49:1263–1270

    Article  CAS  Google Scholar 

  • Sineonova E, Sikora A, Charzynska M, Mostowska A (2000) Aspects of programmed cell death during leaf senescence of mono- and dicotyle donous plants. Protoplasma 214:93–101

    Article  Google Scholar 

  • Smart CM (1994) Tansley review no. 64: gene expression during leaf senescence. New Phytol 126:419–448

    Article  CAS  Google Scholar 

  • Turner GW (1999) A brief history of the lysigenous gland hypothesis. Bot Rev 65:76–88

    Article  Google Scholar 

  • Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433

    Article  PubMed  CAS  Google Scholar 

  • Wang YQ, Cui KM (1998) Programmed cell death during secondary xylem in Eucommia ulmoides shoots. Acta Bot Sin 40:1102–1107

    Google Scholar 

  • Wist TJ, Davis AR (2006) Floral nectar production and nectary anatomy and ultrastructure of Echinacea purpurea (Asteraceae). Ann Bot 97:177–193

    Article  PubMed  Google Scholar 

  • Wojciechowska M, Olszewska MJ (2003) Endosperm degradation during seed development of Echinocystis lobata (Cucurbitaceae) as a manifestation of programmed cell death (PCD) in plants. Folia Histochem Cytobiol 41:41–50

    PubMed  Google Scholar 

  • Yamada T, Ichimura K, van Doorn WG (2006) DNA degradation and nuclear degeneration during programmed cell death in petals of Antirrhinum, Argyranthemum, and Petunia. J Exp Bot 57:3543–3552

    Article  PubMed  CAS  Google Scholar 

  • Zhao GF, Hu ZH (1990) Ultrastructure of the secretory epidermis in development of the laticiferous canals of Decaisnea fargesii. Yushania 7:45–52

    CAS  Google Scholar 

  • Zhu J, Hu ZH (2002) Cytological studies on the development of sieve element and floral nectary tissue in Arabidopsis thaliana. Acta Bot Sin 44:9–14

    Google Scholar 

Download references

Acknowledgements

We thank Margaret Joyner for her excellent revision of the manuscript. This work was supported by the National Natural Science Foundation of China [30970170] and Shannxi Provincial Department of Education Scientific Research Projects for the Key Disciplines of a Key Laboratory of China [09JS087].

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Zhe Liu.

Additional information

Handling Editor: Liwen Jiang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, YF., Liu, WZ. Laticiferous canal formation in fruits of Decaisnea fargesii: a programmed cell death process?. Protoplasma 248, 683–694 (2011). https://doi.org/10.1007/s00709-010-0229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0229-2

Keywords

Navigation