Skip to main content
Log in

Phytochrome-mediated long-term memory of seeds

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary.

The question is how long phytochrome, stored within the cytoplasm of plant diaspores, may stimulate their germination. This question arose from the observation that soil cultivations in darkness for weed control gave inconsistent results. Namely, after a single nighttime or daytime cultivation during spring and summer, differences in weed emergence became hardly detectable after a period of six weeks. However, after nighttime and daytime cultivations in late autumn, emergence differences persisted for up to nine months. To examine whether this differing memory effect is phytochrome-mediated, seeds of Chenopodium album and Stellaria media were sown in pots with wet peat, either in daylight or after sunset. In the latter, seeds were irradiated with far-red light for one day prior to being covered and buried. For more than two years the far-red irradiated seeds produced significantly reduced emergence, indicating that germination and emergence of weeds in the field may be supported by maternal far-red absorbing seed phytochrome Bfr over several months or even years. This conclusion allows refining of the strategy of lightless tillage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J Ascard (1994) ArticleTitleSoil cultivation in darkness reduced weed emergence. Acta Hortic 372 167–177

    Google Scholar 

  • JM Baskin CC Baskin (1979) ArticleTitlePromotion of germination of Stellaria media seeds by light from a green safe lamp. New Phytol 82 381–383

    Google Scholar 

  • – – (1985) The annual dormancy cycle in buried weed seeds: a continuum. Bioscience 35: 492–498

  • FWMz Bentrup (1963) ArticleTitleVergleichende Untersuchungen zur Polaritätsinduktion durch das Licht an der Equisetum-Spore und der Fucus-Zygote. Planta 59 472–491

    Google Scholar 

  • S Benvenuti M Macchia S Miele (2001) ArticleTitleLight, temperature and burial depth effects on Rumex obtusifolius seed germination and emergence. Weed Res 41 177–186 Occurrence Handle10.1046/j.1365-3180.2001.00230.x

    Article  Google Scholar 

  • J Boisard R Malcoste (1970) ArticleTitleLe photocontrôle de la germination des graines de Cucurbita pepo L. (Courge) et le site de la photosensibilité. C R Acad Sc Paris 271 304–307

    Google Scholar 

  • HJ Bouwmeester CM Karssen (1993) ArticleTitleSeasonal periodicity in germination of seeds of Chenopodium album L. Ann Bot 72 463–473 Occurrence Handle10.1006/anbo.1993.1133

    Article  Google Scholar 

  • H Etzold (1965) ArticleTitleDer Polarotropismus und Phototropismus der Chloronemen von Dryopteris filix mas (L.) Schott. Planta 64 254–280 Occurrence Handle10.1007/BF00394953 Occurrence Handle1:CAS:528:DyaF2MXkt1GqtLY%3D

    Article  CAS  Google Scholar 

  • AC Grundy NCB Peters IA Rasmussen KM Hartmann M Sattin L Andersson A Mead AJ Murdoch F Forcella (2003) ArticleTitleEmergence of Chenopodium album and Stellaria media of different origins under different climatic conditions. Weed Res 43 163–176

    Google Scholar 

  • KM Hartmann A Mollwo (2000a) ArticleTitlePhotocontrol of germination: sensitivity shift over eight decades within one week. J Plant Dis Protect Sonderheft XVII 125–131

    Google Scholar 

  • – – (2000b) The action spectrum for maximal photosensitivity of germination. Naturwissenschaften 87: 398–403

  • – – (2002) The action spectrum for maximal photosensitivity of germination and significance for lightless tillage. In: Proceedings of the 5th EWRS Workshop on Physical and Cultural Weed Control, Scuola superiore Sant’Anna, Pisa, Italy, pp 70–78

  • – Krooss C, Mollwo A (1997) Phytochrome-mediated photocontrol of the germination of the scentless mayweed, Matricaria inodora L., and its sensitization by nitrate and temperature. J Photochem Photobiol B40: 240–252; erratum, B41: 255

    Google Scholar 

  • – Mollwo A, Tebbe A (1998) Photocontrol of germination by moon- and starlight. J Plant Dis Protect Sonderheft XVI: 119–127

  • – Götz S, Market R, Kaufmann T, Schneider K (2003) Photocontrol of weed germination: lightless tillage and variable memory of the seedbank. Aspects Appl Biol 69: 237–246

    Google Scholar 

  • – – – – – (2004) Die Effizienz der Bodenbearbeitung im Dunkeln und das variable Gedächtnis der Unkraut-Samenbank. J Plant Dis Protect Sonderheft XIX: 595–603

  • W Haupt (1960) ArticleTitleDie Chloroplastenbewegung bei Mougeotia II. Die Induktion der Schwachlichtbewegung durch linear polarisiertes Licht. Planta 55 465–479 Occurrence Handle10.1007/BF01884859

    Article  Google Scholar 

  • – (1982) Light-mediated movement of chloroplasts. Annu Rev Plant Physiol 33: 205–233

  • H Ikuma KV Thimann (1959) ArticleTitlePhotosensitive site in lettuce seeds. Science 130 568–569 Occurrence Handle13852662 Occurrence Handle1:STN:280:CC%2BB38zlsFU%3D

    PubMed  CAS  Google Scholar 

  • LF Jaffe H Etzold (1962) ArticleTitleOrientation and locus of tropic photoreceptor molecules in spores of Botrytis and Osmunda. J Cell Biol 13 13–31 Occurrence Handle14450869 Occurrence Handle10.1083/jcb.13.1.13 Occurrence Handle1:STN:280:CC2D2M3islU%3D

    Article  PubMed  CAS  Google Scholar 

  • PK Jensen (1992) ArticleTitleFirst Danish experiences with photocontrol of weeds. Z Pflanzenkrankh Pflanzenschutz Sonderheft XIII 631–636

    Google Scholar 

  • – (1995) Effect of light environment during soil disturbance on germination and emergence pattern of weeds. Ann Appl Biol 127: 561–571

  • MJ Kasperbauer PG Hunt (1988) ArticleTitleBiological and photometric measurements of light transmission through soils of various colors. Bot Gazette 149 361–364 Occurrence Handle10.1086/337726

    Article  Google Scholar 

  • WF Kaufmann KM Hartmann (1988) ArticleTitleInternal brightness of disk-shaped samples. J Photochem Photobiol 1 337–360

    Google Scholar 

  • RE Kendrick (1976) ArticleTitlePhotocontrol of seed germination. Sci Prog 63 347–367 Occurrence Handle1:CAS:528:DyaE28XkslCrtrY%3D

    CAS  Google Scholar 

  • Klebs G (1903) Willkürliche Entwicklungsänderungen bei Pflanzen. Ein Beitrag zur Physiologie der Entwicklung. Gustav Fischer, Jena

  • Koornneef M, Kendrick RE (1994) Photomorphogenic mutants of higher plants. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer, Dordrecht, pp 601–628

  • Kraml M (1994) Light direction and polarization. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer, Dordrecht, pp 417–445

  • Mancinelli AL (1994) The physiology of phytochrome action. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer, Dordrecht, pp 211–269

  • – Borthwick HA (1964) Photocontrol of germination and phytochrome reaction in dark-germinating seeds of Lactuca sativa L. Ann Bot 28: 9–24

    Google Scholar 

  • D Meischke (1936) ArticleTitleÜber den Einfluß der Strahlung auf Licht- und Dunkelkeimer. Jahrb Wiss Bot 83 359–405 Occurrence Handle1:CAS:528:DyaA28Xmt1ehtQ%3D%3D

    CAS  Google Scholar 

  • Quail PH (1994) Phytochrome genes and their expression. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer, Dordrecht, pp 71–103

  • – (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3: 85–93

  • Sachs L (1979) Statistische Methoden. Springer, Berlin Heidelberg New York

  • TA Shinomura H Nagatani M Hanzawa M Kubota M Watanabe M Furuya (1996) ArticleTitleAction spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA 93 8129–8133 Occurrence Handle8755615 Occurrence Handle10.1073/pnas.93.15.8129 Occurrence Handle1:CAS:528:DyaK28XksFSqs78%3D

    Article  PubMed  CAS  Google Scholar 

  • W Shropshire WH Klein VB Elstad (1961) ArticleTitleAction spectra of photomorphogenesis induction and photoinactivation of germination in Arabidopsis thaliana. Plant Cell Physiol 2 63–69

    Google Scholar 

  • H Smith (1995) ArticleTitlePhysiological and ecological function within the phytochrome family. Annu Rev Plant Physiol Plant Mol Biol 46 289–315 Occurrence Handle10.1146/annurev.pp.46.060195.001445 Occurrence Handle1:CAS:528:DyaK2MXmsVCqtbs%3D

    Article  CAS  Google Scholar 

  • M Tester C Morris (1987) ArticleTitleThe penetration of light through soil. Plant Cell Environ 10 281–286

    Google Scholar 

  • LM Vleeshouwers HJ Bouwmeester (2001) ArticleTitleA simulation model for seasonal changes in dormancy and germination of weed seeds. Seed Sci Res 11 77–92 Occurrence Handle1:CAS:528:DC%2BD3MXjs1eitbY%3D

    CAS  Google Scholar 

  • Vogelmann TC (1994) Light within the plant. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Kluwer, Dordrecht, pp 491–535

  • Weisenseel MH (1983) Control of differentiation and growth by endogenous electric currents. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysics. Springer, Berlin Heidelberg New York Tokyo, pp 460–465

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Hartmann.

Additional information

Correspondence and reprints: Lehrstuhl für Ökophysiologie der Pflanzen, Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Federal Republic of Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, K., Grundy, A. & Market, R. Phytochrome-mediated long-term memory of seeds. Protoplasma 227, 47–52 (2005). https://doi.org/10.1007/s00709-005-0130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-005-0130-6

Navigation