Skip to main content
Log in

Generalized thermoelastic damping model for small-scale beams with circular cross section in the framework of nonlocal dual-phase-lag heat equation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In light of the certainty of size effect on heat conduction process in extremely small dimensions, the present article seeks to introduce a new theoretical framework for thermoelastic damping (TED) in micro-/nanobeam resonators with circular cross section by utilizing the non-Fourier model of nonlocal dual-phase-lag (NDPL). The first stage involves using NDPL model in order to develop the non-Fourier heat equation of circular cross-sectional beams in polar coordinates. This differential equation can be solved to arrive at temperature distribution in any arbitrary point of the beam. When the constitutive equations of the beam together with the extracted temperature distribution are substituted in the energy-based formulation of TED, an infinite series is produced as the TED relation in the context of NDPL model. Through a comparison study, the reliability of the acquired formula is analyzed. To shed light on how some key factors like nonclassical parameters of NDPL model, beam dimensions and material affect TED, several numerical data are prepared. As per the acquired outcomes, notably at high frequencies of oscillation, the use of NDPL model may profoundly impact the quantity and pattern of TED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Tadigadapa, S.A.K.M., Mateti, K.: Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol. 20(9), 092001 (2009)

    Article  Google Scholar 

  2. Ding, H., Chen, L.Q.: Shock isolation of an orthogonal six-DOFs platform with high-static-low-dynamic stiffness. J. Appl. Mech. 90(11), 111004–111001 (2023)

    Article  Google Scholar 

  3. Lu, Z., Yang, T., Brennan, M.J., Liu, Z., Chen, L.Q.: Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness. J. Appl. Mech. 84(2), 021001 (2017)

    Article  Google Scholar 

  4. Cao, J., Bu, F., Wang, J., Bao, C., Chen, W., Dai, K.: Reconstruction of full-field dynamic responses for large-scale structures using optimal sensor placement. J. Sound Vib. 554, 117693 (2023)

    Article  Google Scholar 

  5. Yang, T., Xiang, G., Cai, J., Wang, L., Lin, X., Wang, J., Zhou, G.: Five-DOF nonlinear tribo-dynamic analysis for coupled bearings during start-up. Int. J. Mech. Sci. 109068 (2024)

  6. Agache, V., Blanco-Gomez, G., Baleras, F., Caillat, P.: An embedded microchannel in a MEMS plate resonator for ultrasensitive mass sensing in liquid. Lab Chip 11(15), 2598–2603 (2011)

    Article  Google Scholar 

  7. Li, J., Wang, Z., Zhang, S., Lin, Y., Wang, L., Sun, C., Tan, J.: A novelty mandrel supported thin-wall tube bending cross-section quality analysis: a diameter-adjustable multi-point contact mandrel. Int. J. Adv. Manuf. Technol. 124(11–12), 4615–4637 (2023)

    Google Scholar 

  8. Gorthi, S., Mohanty, A., Chatterjee, A.: Cantilever beam electrostatic MEMS actuators beyond pull-in. J. Micromech. Microeng. 16(9), 1800 (2006)

    Article  Google Scholar 

  9. Zhang, W., Kang, S., Liu, X., Lin, B., Huang, Y.: Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate. J. Build. Eng. 71, 106522 (2023)

    Article  Google Scholar 

  10. Lu, Z., Brennan, M., Ding, H., Chen, L.: High-static-low-dynamic-stiffness vibration isolation enhanced by damping nonlinearity. Sci. China Technol. Sci. 62, 1103–1110 (2018). https://doi.org/10.1007/s11431-017-9281-9

    Article  Google Scholar 

  11. Yang, J., Ono, T., Esashi, M.: Energy dissipation in submicrometer thick single-crystal silicon cantilevers. J. Microelectromech. Syst. 11(6), 775–783 (2002)

    Article  Google Scholar 

  12. Duwel, A., Gorman, J., Weinstein, M., Borenstein, J., Ward, P.: Experimental study of thermoelastic damping in MEMS gyros. Sens. Actuators A 103(1–2), 70–75 (2003)

    Article  Google Scholar 

  13. Kovács, R., Ván, P.: Second sound and ballistic heat conduction: NaF experiments revisited. Int. J. Heat Mass Transf. 117, 682–690 (2018)

    Article  Google Scholar 

  14. Ding, Z., Chen, K., Song, B., Shin, J., Maznev, A.A., Nelson, K.A., Chen, G.: Observation of second sound in graphite over 200 K. Nat. Commun. 13(1), 285 (2022)

    Article  Google Scholar 

  15. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  Google Scholar 

  16. Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148(2), 766 (1966)

    Article  Google Scholar 

  17. Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38(17), 3231–3240 (1995)

    Article  Google Scholar 

  18. Tzou, D.Y., Guo, Z.Y.: Nonlocal behavior in thermal lagging. Int. J. Therm. Sci. 49(7), 1133–1137 (2010)

    Article  Google Scholar 

  19. Choudhuri, S.R.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30(3), 231–238 (2007)

    Article  Google Scholar 

  20. Green, A.E., Naghdi, P.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  21. Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids 24(12), 4020–4031 (2019)

    Article  MathSciNet  Google Scholar 

  22. Sakha, M., Eslami, M.R.: Generalized thermoelasticity of beams under partial thermal shock. Appl. Math. Model. 79, 402–413 (2020)

    Article  MathSciNet  Google Scholar 

  23. Kiani, Y., Eslami, M.R.: The GDQ approach to thermally nonlinear generalized thermoelasticity of a hollow sphere. Int. J. Mech. Sci. 118, 195–204 (2016)

    Article  Google Scholar 

  24. Abouelregal, A.E., Civalek, Ö., Oztop, H.F.: Higher-order time-differential heat transfer model with three-phase lag including memory-dependent derivatives. Int. Commun. Heat Mass Transf. 128, 105649 (2021)

    Article  Google Scholar 

  25. Yue, X., Yue, X., Borjalilou, V.: Generalized thermoelasticity model of nonlocal strain gradient Timoshenko nanobeams. Arch. Civ. Mech. Eng. 21(3), 124 (2021)

    Article  Google Scholar 

  26. Al-Lehaibi, E.A.: Influence of the static pre-stress on the thermal quality factor of a micro-resonator under the dual-phase-lag heat conduction model. Acta Mech. 234(12), 6579–6587 (2023)

    Article  Google Scholar 

  27. Abouelregal, A.E., Akgöz, B., Civalek, Ö.: Magneto-thermoelastic interactions in an unbounded orthotropic viscoelastic solid under the Hall current effect by the fourth-order Moore–Gibson–Thompson equation. Comput. Math. Appl. 141, 102–115 (2023)

    Article  MathSciNet  Google Scholar 

  28. Li, C., Lu, Y., Guo, H., He, T., & Tian, X.: Non-Fick diffusion–elasticity based on a new nonlocal dual-phase-lag diffusion model and its application in structural transient dynamic responses. Acta Mech. 1–17 (2023)

  29. Kiani, Y., Eslami, M.R.: Nonlinear generalized thermoelasticity of an isotropic layer based on Lord-Shulman theory. Eur. J. Mech.-A/Solids 61, 245–253 (2017)

    Article  MathSciNet  Google Scholar 

  30. Sharma, D.K., Bachher, M., Manna, S., Sarkar, N.: Vibration analysis of functionally graded thermoelastic nonlocal sphere with dual-phase-lag effect. Acta Mech. 231(5), 1765–1781 (2020)

    Article  MathSciNet  Google Scholar 

  31. Askar, S.S., Abouelregal, A.E., Foul, A., Sedighi, H.M.: Pulsed excitation heating of semiconductor material and its thermomagnetic response on the basis of fourth-order MGT photothermal model. Acta Mech. 234(10), 4977–4995 (2023)

    Article  MathSciNet  Google Scholar 

  32. Kiani, Y., Eslami, M.R.: A GDQ approach to thermally nonlinear generalized thermoelasticity of disks. J. Therm. Stress. 40(1), 121–133 (2017)

    Article  Google Scholar 

  33. Tiwari, R., Abouelregal, A.E.: Thermo-viscoelastic transversely isotropic rotating hollow cylinder based on three-phase lag thermoelastic model and fractional Kelvin–Voigt type. Acta Mech. 233(6), 2453–2470 (2022)

    Article  MathSciNet  Google Scholar 

  34. Zener, C.: Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52(3), 230 (1937)

    Article  Google Scholar 

  35. Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 61(8), 5600 (2000)

    Article  Google Scholar 

  36. Zhou, H., Li, P., Fang, Y.: Thermoelastic damping in circular cross-section micro/nanobeam resonators with single-phase-lag time. Int. J. Mech. Sci. 142, 583–594 (2018)

    Article  Google Scholar 

  37. Zhou, H., Li, P., Zuo, W., Fang, Y.: Dual-phase-lag thermoelastic damping models for micro/nanobeam resonators. Appl. Math. Model. 79, 31–51 (2020)

    Article  MathSciNet  Google Scholar 

  38. Guo, F.L., Wang, G.Q., Rogerson, G.: Analysis of thermoelastic damping in micro-and nanomechanical resonators based on dual-phase-lagging generalized thermoelasticity theory. Int. J. Eng. Sci. 60, 59–65 (2012)

    Article  MathSciNet  Google Scholar 

  39. Li, P., Fang, Y., Hu, R.: Thermoelastic damping in rectangular and circular microplate resonators. J. Sound Vib. 331(3), 721–733 (2012)

    Article  Google Scholar 

  40. Kim, J.H., Kim, J.H.: Phase-lagging of the thermoelastic dissipation for a tubular shell model. Int. J. Mech. Sci. 163, 105094 (2019)

    Article  Google Scholar 

  41. Jalil, A.T., Karim, N., Ruhaima, A.A.K., Sulaiman, J.M.A., Hameed, A.S., Abed, A.S., Rayani, Y.: Analytical model for thermoelastic damping in in-plane vibrations of circular cross-sectional micro/nanorings with dual-phase-lag heat conduction. J. Vib. Eng. Technol., 1–14 (2023)

  42. Ge, Y., Sarkar, A.: Thermoelastic damping in vibrations of small-scaled rings with rectangular cross-section by considering size effect on both structural and thermal domains. Int. J. Struct. Stab. Dyn. 23(03), 2350026 (2023)

    Article  MathSciNet  Google Scholar 

  43. Borjalilou, V., Asghari, M., Taati, E.: Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect. J. Vib. Control 26(11–12), 1042–1053 (2020)

    Article  MathSciNet  Google Scholar 

  44. Singh, B., Kumar, H., Mukhopadhyay, S.: Thermoelastic damping analysis in micro-beam resonators in the frame of modified couple stress and Moore–Gibson–Thompson (MGT) thermoelasticity theories. Waves in Random and Complex Media, 1–18 (2021)

  45. Li, S.R., Xiang, Y., Shen, H.S.: Modelling and evaluation of thermoelastic damping of FGM micro plates based on the Levinson plate theory. Compos. Struct. 278, 114684 (2021)

    Article  Google Scholar 

  46. Li, F., Esmaeili, S.: On thermoelastic damping in axisymmetric vibrations of circular nanoplates: incorporation of size effect into structural and thermal areas. Eur. Phys. J. Plus 136(2), 1–17 (2021)

    Article  Google Scholar 

  47. Rashahmadi, S., Meguid, S.A.: Modeling size-dependent thermoelastic energy dissipation of graphene nanoresonators using nonlocal elasticity theory. Acta Mech. 230, 771–785 (2019)

    Article  MathSciNet  Google Scholar 

  48. Li, M., Cai, Y., Fan, R., Wang, H., Borjalilou, V.: Generalized thermoelasticity model for thermoelastic damping in asymmetric vibrations of nonlocal tubular shells. Thin-Walled Struct. 174, 109142 (2022)

    Article  Google Scholar 

  49. Dhore, N., Khalsa, L., Varghese, V.: Transient hygrothermoelastic damping analysis of cylindrical nanobeams within a fractional order system. Acta Mech. 1–17 (2023)

  50. Shi, S., He, T., Jin, F.: Thermoelastic damping analysis of size-dependent nano-resonators considering dual-phase-lag heat conduction model and surface effect. Int. J. Heat Mass Transf. 170, 120977 (2021)

    Article  Google Scholar 

  51. Kumar, H., Mukhopadhyay, S.: Thermoelastic damping analysis in microbeam resonators based on Moore–Gibson–Thompson generalized thermoelasticity theory. Acta Mech. 231(7), 3003–3015 (2020)

    Article  MathSciNet  Google Scholar 

  52. Ge, X., Li, P., Fang, Y., Yang, L.: Thermoelastic damping in rectangular microplate/nanoplate resonators based on modified nonlocal strain gradient theory and nonlocal heat conductive law. J. Therm. Stress. 44(6), 690–714 (2021)

    Article  Google Scholar 

  53. Borjalilou, V., Asghari, M.: Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model. Acta Mech. 229, 3869–3884 (2018)

    Article  MathSciNet  Google Scholar 

  54. Wang, Y.W., Li, X.F.: Synergistic effect of memory-size-microstructure on thermoelastic damping of a micro-plate. Int. J. Heat Mass Transf. 181, 122031 (2021)

    Article  Google Scholar 

  55. Yu, Y.J., Tian, X.G., Liu, J.: Size-dependent damping of a nanobeam using nonlocal thermoelasticity: extension of Zener, Lifshitz, and Roukes’ damping model. Acta Mech. 228, 1287–1302 (2017)

    Article  MathSciNet  Google Scholar 

  56. Khisaeva, Z.F., Ostoja-Starzewski, M.: Thermoelastic damping in nanomechanical resonators with finite wave speeds. J. Therm. Stresses 29(3), 201–216 (2006)

    Article  Google Scholar 

  57. Jalil, A.T., Saleh, Z.M., Imran, A.F., Yasin, Y., Ruhaima, A.A.K., Gatea, M.A., Esmaeili, S.: A size-dependent generalized thermoelasticity theory for thermoelastic damping in vibrations of nanobeam resonators. Int. J. Struct. Stab. Dyn. 2350133 (2023)

  58. Borjalilou, V., Asghari, M., Bagheri, E.: Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J. Therm. Stresses 42(7), 801–814 (2019)

    Article  Google Scholar 

  59. Weng, L., Xu, F., Chen, X.: Three-dimensional analysis of thermoelastic damping in couple stress-based rectangular plates with nonlocal dual-phase-lag heat conduction. Eur. J. Mech.-A/Solids 105, 105223 (2024)

    Article  MathSciNet  Google Scholar 

  60. Al-Bahrani, M., AbdulAmeer, S.A., Yasin, Y., Alanssari, A.I., Hameed, A.S., Sulaiman, J.M.A., Alam, M.M.: Couple stress-based thermoelastic damping in microrings with rectangular cross section according to Moore–Gibson–Thompson heat equation. Arch. Civ. Mech. Eng. 23(3), 151 (2023)

  61. Hai, L., Kim, D.J.: Nonlocal dual-phase-lag thermoelastic damping in small-sized circular cross-sectional ring resonators. Mech. Adv. Mater. Struct. 1–17 (2023)

  62. Cao, J., Quek, S.T., Xiong, H., Yang, Z.: Comparison of constrained unscented and cubature Kalman filters for nonlinear system parameter identification. J. Eng. Mech. 149(11), 04023088 (2023)

    Article  Google Scholar 

  63. Tzou, D.Y.: Macro-to microscale heat transfer: the lagging behavior. Wiley (2014)

    Book  Google Scholar 

  64. Zhou, H., Jiang, H., Li, P., Xue, H., Bo, B.: Thermoelastic damping in the size-dependent micro/nanobeam resonator with nonlocal dual-phase-lag heat conduction. Thin-Walled Struct. 169, 108437 (2021)

    Article  Google Scholar 

  65. Bae, M.H., Li, Z., Aksamija, Z., Martin, P.N., Xiong, F., Ong, Z.Y., Pop, E.: Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 4(1), 1–7 (2023)

  66. Hahn, D.W., Özisik, M.N.: Heat conduction. Wiley (2012)

    Book  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatma Zohra Saidoune or Abdul Nasser Mahmood Fatah.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidoune, F.Z., Turabi Ahmad, M.Y., Ali, E. et al. Generalized thermoelastic damping model for small-scale beams with circular cross section in the framework of nonlocal dual-phase-lag heat equation. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03941-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03941-y

Navigation