Skip to main content
Log in

The dispersion and reflection characteristics of coupled waves in the piezomagnetic solid with flexomagnetic microstructure effect

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The dispersion and reflection characteristics of coupled waves in the piezomagnetic solid with flexomagnetic microstructure effect are studied in this paper. The flexomagnetic effect, strain gradient effect and micro-inertia effect are introduced into the constitutive equation and the governing equation to establish the wave propagation theory in the piezomagnetic solid with flexomagnetic microstructure effect. The secular equation of wave propagation is derived, and the properties of five coupled waves are analyzed. The dispersion characteristics of coupled waves and the reflection properties of coupled waves at the free boundary are solved numerically and checked by the energy conservation law. The influences of the flexomagnetic effect, strain gradient effect and micro-inertia effect on the wave propagation are discussed. It is found that the flexomagnetic effect mainly enhances the mechanical-magnetic coupled property, strain gradient effect mainly enhances the elastic property, and micro-inertia effect not only enhances the inertia property, but also essentially changes the dispersion characteristics of coupled waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Auffray, N., Bouchet, R., Brechet, Y.: Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior. Int. J. Solids Struct. 46(2), 440–454 (2009)

    Article  Google Scholar 

  2. Belyaev, B.A., Izotov, A.V., Solovev, P.N., et al.: Strain-gradient-induced unidirectional magnetic anisotropy in nanocrystalline thin permalloy films. Physica Status Solidi (RRL) Rapid Res. Lett. 14(1), 1900467 (2020)

    Article  Google Scholar 

  3. Borkar, H., Gaikwad, V.M., Choudhary, R.J., et al.: Flexomagnetic effects on inhomogeneously strained multiferroics composites. J. Magn. Magn. Mater. 553, 169274 (2022)

    Article  Google Scholar 

  4. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  Google Scholar 

  5. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)

    Article  Google Scholar 

  6. Hu, T., Yang, W., Liang, X., et al.: Wave propagation in flexoelectric microstructured solids. J. Elast. 130, 197–210 (2018)

    Article  MathSciNet  Google Scholar 

  7. Jiao, F., Wei, P., Li, L.: Wave propagation through an inhomogeneous slab sandwiched by the piezoelectric and the piezomagnetic half spaces. Ultrasonics 73, 22–33 (2017)

    Article  Google Scholar 

  8. Jiao, F.Y., Wei, P.J., Li, Y.Q.: Wave propagation in piezoelectric medium with the flexoelectric effect considered. J. Mech. 35(1), 51–63 (2019)

    Article  Google Scholar 

  9. Jiao, F., Wei, P., Li, Y.: Wave propagation through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces. Ultrasonics 82, 217–232 (2018)

    Article  Google Scholar 

  10. Kabychenkov, A.F., Lisovskii, F.V.: Flexomagnetic and flexoantiferromagnetic effects in centrosymmetric antiferromagnetic materials. Tech. Phys. 64, 980–983 (2019)

    Article  Google Scholar 

  11. Lee, J.H., Kim, K.E., Jang, B.K., et al.: Strain-gradient-induced magnetic anisotropy in straight-stripe mixed-phase bismuth ferrites: Insight into flexomagnetism. Phys. Rev. B 96(6), 064402 (2017)

    Article  Google Scholar 

  12. Lukashev, P., Sabirianov, R.F.: Flexomagnetic effect in frustrated triangular magnetic structures. Phys. Rev. B 82(9), 094417 (2010)

    Article  Google Scholar 

  13. Malikan, M., Eremeyev, V.A.: Flexomagnetic response of buckled piezomagnetic composite nanoplates. Compos. Struct. 267, 113932 (2021)

    Article  Google Scholar 

  14. Malikan, M., Wiczenbach, T., Eremeyev, V.A.: Thermal buckling of functionally graded piezomagnetic micro-and nanobeams presenting the flexomagnetic effect. Contin. Mech. Thermodyn. 34(4), 1051–1066 (2022)

    Article  MathSciNet  Google Scholar 

  15. Mawassy, N., Reda, H., Ganghoffer, J.F., et al.: Wave propagation analysis in non-local flexoelectric composite materials. Compos. Struct. 278, 114696 (2021)

    Article  Google Scholar 

  16. Pang, Y., Wang, Y.S., Liu, J.X., et al.: Reflection and refraction of plane waves at the interface between piezoelectric and piezomagnetic media. Int. J. Eng. Sci. 46(11), 1098–1110 (2008)

    Article  MathSciNet  Google Scholar 

  17. Polizzotto, C.: Nonlocal elasticity and related variational principles. Int. J. Solids Struct. 38(42–43), 7359–7380 (2001)

    Article  MathSciNet  Google Scholar 

  18. Qi, L.: Rayleigh wave propagation in semi-infinite flexoelectric dielectrics. Phys. Scr. 94(6), 065803 (2019)

    Article  Google Scholar 

  19. Sidhardh, S., Ray, M.C.: Flexomagnetic response of nanostructures. J. Appl. Phys. 124(24), 244101 (2018)

    Article  Google Scholar 

  20. Sladek, J., Sladek, V., Xu, M., et al.: A cantilever beam analysis with flexomagnetic effect. Meccanica 56(9), 2281–2292 (2021)

    Article  MathSciNet  Google Scholar 

  21. Thai, L.M., Luat, D.T., Phung, V.B., et al.: Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects. Arch. Appl. Mech. 92, 163–182 (2022)

    Article  Google Scholar 

  22. Wang, B., Li, X.F.: Flexoelectric effects on the natural frequencies for free vibration of piezoelectric nanoplates. J. Appl. Phys. 129(3), 034102 (2021)

    Article  Google Scholar 

  23. Xu, L., Shen, S.: Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. Int. J. Appl. Mech. 5(02), 1350015 (2013)

    Article  Google Scholar 

  24. Yan, Z., Jiang, L.Y.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113(19), 194102 (2013)

    Article  Google Scholar 

  25. Yang, W., Deng, Q., Liang, X., et al.: Lamb wave propagation with flexoelectricity and strain gradient elasticity considered. Smart Mater. Struct. 27(8), 085003 (2018)

    Article  Google Scholar 

  26. Yang, W., Liang, X., Deng, Q., et al.: Rayleigh wave propagation in a homogeneous centrosymmetric flexoelectric half-space. Ultrasonics 103, 106105 (2020)

    Article  Google Scholar 

  27. Yang, W., Liang, X., Shen, S.: Love waves in layered flexoelectric structures. Philos. Mag. 97(33), 3186–3209 (2017)

    Article  Google Scholar 

  28. Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226(9), 3097–3110 (2015)

    Article  MathSciNet  Google Scholar 

  29. Zhang, N., Zheng, S., Chen, D.: Size-dependent static bending of flexomagnetic nanobeams. J. Appl. Phys. 126(22), 223901 (2019)

    Article  Google Scholar 

  30. Zhang, N., Zheng, S., Chen, D.: Size-dependent static bending, free vibration and buckling analysis of curved flexomagnetic nanobeams. Meccanica 57(7), 1505–1518 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support by the National Natural Science Foundation of China (Grant Nos.52008152 and 12101177) and Natural Science Foundation of Hebei Province of China (Grant Nos.E2021202087 and A2021202001).

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyu Jiao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, F., Liu, Z., Liu, J. et al. The dispersion and reflection characteristics of coupled waves in the piezomagnetic solid with flexomagnetic microstructure effect. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03940-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03940-z

Navigation