Skip to main content
Log in

Wave propagation analysis of functionally graded graphene origami-enabled auxetic metamaterial beams resting on an elastic foundation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Our study employs the Timoshenko beam theory to thoroughly investigate the propagation of waves in auxetic metamaterial beams enabled by functionally graded graphene origami. This exploration is conducted while the Winkler–Pasternak foundation supports the beams. In addition, many distinct graphene origami (GOri) distribution patterns have been explored, and the results have been shown to be uniform and functionally graded across the thickness direction. The kinetic equations of auxetic metamaterial beams may be captured with the help of Hamilton's principle, which is applied here. The analytical solution of the governing equations for the auxetic metamaterial beam is determined based on the received information. Comparisons have been made between the effects that a wide variety of parameters have on the wave frequency and phase velocity of the auxetic metamaterial beam. These parameters include graphene distribution pattern and content, GOri folding degree, temperature, wave number, and elastic foundation coefficients. The crucial aspects of each figure have been identified through in-depth analysis and comparison of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akinwande, D., et al.: Large-area graphene electrodes: using CVD to facilitate applications in commercial touchscreens, flexible nanoelectronics, and neural interfaces.". IEEE Nanotechnol. Magazine 9, 6–14 (2015)

    Google Scholar 

  2. Zhong, M., et al.: Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells.". Nano Energy 28, 12–18 (2016)

    Google Scholar 

  3. Ke, L.-L., Yang, J., Kitipornchai, S.: Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos. Struct. 92(3), 676–683 (2010)

    Google Scholar 

  4. Wattanasakulpong, N., Ungbhakorn, V.: Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput. Mater. Sci. 71, 201–208 (2013)

    Google Scholar 

  5. Malekzadeh, P., Zarei, A.R.: Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers. Thin-Walled Structures 82, 221–232 (2014)

    Google Scholar 

  6. Ebrahimi, F., Ali, S., Ali, D.: The effects of thermal loadings on wave propagation analysis of multi-scale hybrid composite beams." Waves in Random and Complex Media (2021): 1–24.

  7. Bensaid, I., Kerboua, B.: Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations. Adv. Aircraft Spacecraft Sci 6(3), 207–223 (2019)

    Google Scholar 

  8. Ebrahimi, F., Seyfi, A.: Wave propagation response of multi-scale hybrid nanocomposite shell by considering aggregation effect of CNTs. Mech. Based Des. Struct. Mach. 49(1), 59–80 (2021)

    Google Scholar 

  9. Mirzaei, M., Abbasi, M.: Dynamic response of moderately thick graphene reinforced composite cylindrical panels under the action of moving load. Eng. Anal. Boundary Elem. 146, 292–305 (2023)

    MathSciNet  MATH  Google Scholar 

  10. Sobhani, E., et al.: Natural frequency investigation of graphene oxide powder nanocomposite cylindrical shells surrounded by Winkler/Pasternak/Kerr elastic foundations with a focus on various boundary conditions. Eng. Anal. Boundary Elements 149, 38–51 (2023)

    MathSciNet  MATH  Google Scholar 

  11. Ebrahimi, F., Seyfi, A.: Wave dispersion analysis of embedded MWCNTs-reinforced nanocomposite beams by considering waviness and agglomeration factors. Waves in Random and Complex Media 33(3), 525–544 (2023)

    MathSciNet  Google Scholar 

  12. Ding, H.-X., Yi-Wen, Z., Gui-Lin, S. (2023) Propagation characteristics of guided waves in CNTRCs plates resting on elastic foundations in a thermal environment." Waves in Random and Complex Media (2023): 1–18.

  13. Xiang, J., et al. (2023) Wave propagation phenomenon of functionally graded graphene oxide powder-strengthened nanocomposite curved beam." Solid State Commun. 369 (2023): 115193.

  14. Keshtegar, B., et al.: Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping. Thin-Walled Struct. 154, 106820 (2020)

    Google Scholar 

  15. Ebrahimi, F., Ali, S.: On wave propagation characteristics of hygrothermally excited graphene foam plates." Waves in Random and Complex Media (2022): 1–20.

  16. Ebrahimi, F., Ali, S.: On hygrothermal wave dispersion characteristics of embedded graphene foam." Waves in Random and Complex Med. (2022): 1–20

  17. Zaitoun, M.W., et al.: Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment.". Thin-Walled Struct. 170, 108549 (2022)

    Google Scholar 

  18. Zaitoun, M.W., et al.: An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects.". Eng. Comput. 39(2), 1127–1141 (2023)

    Google Scholar 

  19. Tounsi, A., et al.: Free vibration investigation of functionally graded plates with temperature-dependent properties resting on a viscoelastic foundation. Struct. Eng. Mech. An Intl J. 86(1), 1–1 (2023)

    Google Scholar 

  20. Khorasani, M., et al.: A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate. Steel and Compos. Struct. 47, 633–644 (2023)

    Google Scholar 

  21. Bounouara, F., et al.: Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates. Steel Compos Struct. 47, 693–707 (2023)

    Google Scholar 

  22. Hebali, H., et al.: Effect of the variable visco-Pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT model. Arch Appl. Mech 83(2), 177–191 (2022)

    Google Scholar 

  23. Bouafia, K., et al.: Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model.". Steel and Compos. Struct. An Int. J. 41(4), 487–503 (2021)

    Google Scholar 

  24. Bennedjadi, M., et al.: Visco-elastic foundation effect on buckling response of exponentially graded sandwich plates under various boundary conditions.". Geomech. Eng. 32(2), 159 (2023)

    Google Scholar 

  25. Mudhaffar, I.M., et al.: Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation." Structures. Vol. 33. Elsevier, 2021.

  26. Hadji, M., et al.: Combined influence of porosity and elastic foundation parameters on the bending behavior of advanced sandwich structures.". Steel Compos. Struct. 46(1), 1 (2023)

    Google Scholar 

  27. Mudhaffar, I.M., et al.: Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads.". Struct. Eng. Mech. 86(2), 167–180 (2023)

    Google Scholar 

  28. Tahir, S.I., et al.: The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT.". Steel Compos. Struct. 42(4), 501 (2022)

    Google Scholar 

  29. Bounouara, F., et al.: The effect of visco-Pasternak foundation on the free vibration behavior of exponentially graded sandwich plates with various boundary conditions. Steel Compos. Struct. Int. J. 46(3), 367–383 (2023)

    Google Scholar 

  30. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves.". Int. J. Eng. Sci. 10(5), 425–435 (1972)

    MATH  Google Scholar 

  31. Yang, F.A.C.M., et al.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    MATH  Google Scholar 

  32. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991)

    MATH  Google Scholar 

  33. Akgöz, B., Civalek, Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226, 2277–2294 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Nazemizadeh, M., et al.: Nonlinear vibration of piezoelectric laminated nanobeams at higher modes based on nonlocal piezoelectric theory. Acta Mech. 231, 4259–4274 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Ebrahimi, F., Majid, G., Ali, D.: Hygro-thermo-viscoelastic wave propagation analysis of FGM nanoshells via nonlocal strain gradient fractional time–space theory." Waves in Random and Complex Media (2022): 1–20.

  36. Numanoğlu, H.M., et al.: A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method.". Math .Methods Appl. Sci. 45(5), 2592–2614 (2022)

    MathSciNet  Google Scholar 

  37. Akgöz, B., Civalek, Ö.: Buckling analysis of functionally graded tapered microbeams via Rayleigh-Ritz method. Mathematics 10(23), 4429 (2022)

    Google Scholar 

  38. Jalaei, M.H., Thai, H.T., Civalek, Ӧ: On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 172, 103629 (2022)

    MathSciNet  MATH  Google Scholar 

  39. Demir, C., et al.: Bending response of nanobeams resting on elastic foundation.". J. Appl. Comput. Mech. 4(2), 105–114 (2018)

    Google Scholar 

  40. Wu, D., et al.: Free Vibration Analysis of Carbon-Nanotube-Reinforced Beams Resting on a Viscoelastic Pasternak Foundation by the Nonlocal Eshelby–Mori–Tanaka Method." Mech. Compos. Mater. (2023): 1–16.

  41. Evans, K.E., et al.: Molecular network design. Nature 353(6340), 124–124 (1991)

    Google Scholar 

  42. Changfang, Z., et al.: Compressive mechanical behavior for surface auxetic structures.". J. Alloys Compounds 894, 162427 (2022)

    Google Scholar 

  43. Li, C., et al.: Low-velocity impact response of sandwich plates with GRC face sheets and FG auxetic 3D lattice cores. Eng. Anal. Boundary Elements 132, 335–344 (2021)

    MathSciNet  MATH  Google Scholar 

  44. Hou, S., et al.: Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact.". Mater. Design 160, 1305–1321 (2018)

    Google Scholar 

  45. Eghbali, P., et al.: Study in circular auxetic structures for efficiency enhancement in piezoelectric vibration energy harvesting.". Sci. Rep. 10(1), 16338 (2020)

    Google Scholar 

  46. Khorshidi, K., Rezaeisaray, M., Karimi, M.: Energy harvesting using vibrating honeycomb sandwich panels with auxetic core and carbon nanotube-reinforced face sheets. Int. J. Solids Struct. 256, 111988 (2022)

    Google Scholar 

  47. Joshi, H.R.: Finite element analysis of effective mechanical properties, vibration and acoustic performance of auxetic chiral core sandwich structures. Diss. Clemson University, 2013.

  48. Li, C., Shen, H.-S., Wang, H.: Thermal post-buckling of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Int. J. Mech. Sci. 152, 289–297 (2019)

    Google Scholar 

  49. Duc, N.D., et al.: Dynamic response and vibration of composite double curved shallow shells with negative Poisson’s ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads.". Int. J. Mech. Sci. 133, 504–512 (2017)

    Google Scholar 

  50. Li, C., Shen, H.-S., Yang, J.: Multi-scale modeling and numerical analysis of sandwich beams with FG auxetic 3D lattice cores and GRC face sheets subjected to drop-weight impacts. Eng. Struct. 265, 114486 (2022)

    Google Scholar 

  51. Sarafraz, M., et al.: Free vibration and buckling analyses of a rectangular sandwich plate with an auxetic honeycomb core and laminated three-phase polymer/GNP/fiber face sheets.". Thin-Walled Struct. 183, 110331 (2023)

    Google Scholar 

  52. Mirfatah, S.M. et al.: Geometrically nonlinear analysis of sandwich panels with auxetic honeycomb core and nanocomposite enriched face-sheets under periodic and impulsive loads." Aerospace Sci. Technol. (2023): 108195.

  53. Seyfi, Ali, Amir Teimouri, and Farzad Ebrahimi. "Scale-dependent torsional vibration response of non-circular nanoscale auxetic rods." Waves in Random and Complex Media (2021): 1–17.

  54. Dong, D.T. et al.: An analytical approach for nonlinear buckling analysis of torsionally loaded sandwich carbon nanotube reinforced cylindrical shells with Auxetic Core." (2023).

  55. Nguyen, V.D., Quoc, V.V.: Dynamic vibration analysis of double-layer auxetic FGP sandwich plates under blast loads using improved first-order shear plate theory.". Alexandria Eng. J. 69, 135–165 (2023)

    Google Scholar 

  56. Li, C., Shen, H.-S., Wang, H.: Nonlinear bending of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Compos. Struct. 212, 317–325 (2019)

    Google Scholar 

  57. Li, C., Shen, H.-S., Wang, H.: Nonlinear vibration of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Int. J. Struct. Stab. Dyn. 19(03), 1950034 (2019)

    Google Scholar 

  58. Zamani, V., Akbar, A.: APPLICATION OF GDQ METHOD FOR FREE VIBRATION BEHAVIOR OF AN AUXETIC SANDWICH BEAM WITH FG CNT-REINFORCED NANOCOMPOSITE FACE SHEETS RESTING ON AN ELASTIC SUBSTRATE." Nanosci. Technol.: An Int. J. 14.4 (2023).

  59. Al Mukahal, F.H.H., Mohammed, S.: Wave propagation and free vibration of FG graphene platelets sandwich curved beam with auxetic core resting on viscoelastic foundation via DQM.". Archiv. Civil Mech. Eng. 22, 1–21 (2022)

    Google Scholar 

  60. Xu, X., Deng, Z.: Wave propagation characteristics in thick conventional and auxetic cellular plates. Acta Mech. Solida Sin. 29(2), 159–166 (2016)

    Google Scholar 

  61. Ebrahimi, F., Mohaddese, S.: Wave propagation analysis of cylindrical sandwich shell with auxetic core utilizing first-order shear deformable theory (FSDT)." Mech. Based Design of Struct. Mach. (2022): 1–25.

  62. Al-Furjan, M. S. H., et al.: Wave propagation analysis of micro air vehicle wings with honeycomb core covered by porous FGM and nanocomposite magnetostrictive layers." Waves in Random and Complex Media (2023): 1–30.

  63. Fang, X., et al.: Wave propagation in one-dimensional nonlinear acoustic metamaterials.". New J. Phys. 19(5), 053007 (2017)

    MathSciNet  MATH  Google Scholar 

  64. Yeh, J.Y.: Vibration and wave propagation characteristic analysis of periodic auxetic star-shaped structure system." Mater. Sci. Forum. Vol. 1009. Trans Tech Publications Ltd, 2020.

  65. Al-Furjan, M.S.H., et al.: On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories." Waves in Random and Complex Media (2022): 1–25.

  66. Ghafouri, M., Ghassabi, M., Talebitooti, R.: Applying a 3D Re-entrant auxetic cellular core to a graphene nanoplatelet-reinforced doubly curved structure: a sound transmission loss study. J. Eng. Mech. 149(10), 04023077 (2023)

    Google Scholar 

  67. Mahinzare, M., Abbas, R., Farzad, E.: Magnetic field effects on wave dispersion of piezo-electrically actuated auxetic sandwich shell via GPL reinforcement." (2023).

  68. Taylor, M., et al.: Low porosity metallic periodic structures with negative Poisson’s ratio.". Adv. Mater. 261(5), 2365–2370 (2014)

    Google Scholar 

  69. Clarke, J.F., et al.: Negative Poisson’s ratios in angle-ply laminates: theory and experiment. Composites 25(9), 863–868 (1994)

    Google Scholar 

  70. Evans, K.E., Donoghue, J.P., Alderson, K.L.: The design, matching and manufacture of auxetic carbon fibre laminates. J. Compos. Mater. 38(2), 95–106 (2004)

    Google Scholar 

  71. Shen, H.-S., Chong, L., Xu-Hao, H.: Assessment of negative Poisson’s ratio effect on the postbuckling of pressure-loaded FG-CNTRC laminated cylindrical shells." Mech. Based Design of Struct. Mach. (2021): 1–100.

  72. Huang, Xh., et al.: Geometric non-linear analysis of auxetic hybrid laminated beams containing CNT reinforced composite materials. Materials 13(17), 3718 (2020)

    Google Scholar 

  73. Yang, J., Huang, X.-H., Shen, H.-S.: Nonlinear vibration of temperature-dependent FG-CNTRC laminated beams with negative Poisson’s ratio. Int. J. Struct. Stab. Dyn. 20(04), 2050043 (2020)

    MathSciNet  Google Scholar 

  74. Shen, H.-S., Xiang, Y., Reddy, J.N.: Effect of negative Poisson’s ratio on the post-buckling behavior of FG-GRMMC laminated plates in thermal environments. Compos. Struct. 253, 112731 (2020)

    Google Scholar 

  75. Wang, Z.-X., Shen, H.-S., Shen, Le.: Thermal postbuckling analysis of sandwich beams with functionally graded auxetic GRMMC core on elastic foundations. J. Therm. Stresses 44(12), 1479–1494 (2021)

    Google Scholar 

  76. Shen, H.-S., Li, C., Huang, X.-H.: Assessment of negative Poisson’s ratio effect on the postbuckling of pressure-loaded FG-CNTRC laminated cylindrical shells. Mech. Based Des. Struct. Mach. 51(4), 1856–1880 (2023)

    Google Scholar 

  77. Fan, Y., Shen, H.-S., Xiang, Y.: Nonlinear vibration characteristics of pre-and post-buckled FG-GRMMC laminated plates with in-plane auxeticity.". Eng. Struct. 274, 115068 (2023)

    Google Scholar 

  78. Yang, C., Ma, W.: Low-velocity impact response of FG-CNTRC laminated plates with negative Poisson’s ratios and clamped boundary conditions. J. Braz. Soc. Mech. Sci. Eng. 44(8), 337 (2022)

    Google Scholar 

  79. Grima, J.N., et al.: Tailoring graphene to achieve negative Poisson’s ratio properties.". Adv. Mater. 27(8), 1455–1459 (2015)

    Google Scholar 

  80. Ho, D.T., Kim, S.Y., Schwingenschlögl, U.: Graphene origami structures with superflexibility and highly tunable auxeticity.". Phys. Rev. B 102(17), 174106 (2020)

    Google Scholar 

  81. Zhao, S., et al.: Graphene origami-enabled auxetic metallic metamaterials: an atomistic insight.". Int. J. Mech. Sci. 212, 106814 (2021)

    Google Scholar 

  82. Zhao, S., et al.: Genetic programming-assisted micromechanical models of graphene origami-enabled metal metamaterials.". Acta Materialia 228, 117791 (2022)

    Google Scholar 

  83. Guo, L., et al.: Bandgaps in functionally graded phononic crystals containing graphene origami-enabled metamaterials.". Int. J. Mech. Sci. 240, 107956 (2023)

    Google Scholar 

  84. Zhao, S., et al.: A functionally graded auxetic metamaterial beam with tunable nonlinear free vibration characteristics via graphene origami.". Thin-Walled Struct. 181, 109997 (2022)

    Google Scholar 

  85. Zhao, S., et al.: Vibrational characteristics of functionally graded graphene origami-enabled auxetic metamaterial beams based on machine learning assisted models.". Aerospace Sci. Technol. 130, 107906 (2022)

    Google Scholar 

  86. Zhao, S., et al.: Tunable nonlinear bending behaviors of functionally graded graphene origami enabled auxetic metamaterial beams.". Compos. Struct. 301, 116222 (2022)

    Google Scholar 

  87. Zhao, S., et al.: Functionally graded graphene origami-enabled auxetic metamaterial beams with tunable buckling and postbuckling resistance.". Eng. Struct. 268, 114763 (2022)

    Google Scholar 

  88. Murari, B., et al.: Vibrational characteristics of functionally graded graphene origami-enabled auxetic metamaterial beams with variable thickness in fluid.". Eng. Struct. 277, 115440 (2023)

    Google Scholar 

  89. Ebrahimi, F., Ali, D.: Wave propagation analysis of smart nanostructures. CRC Press, 2019.

  90. Yas, M.H., Samadi, N.: Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int. J. Press. Vessels Pip. 98, 119–128 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ M = \left[ {\begin{array}{*{20}c} {m_{11} } & 0 & {m_{13} } \\ 0 & {m_{22} } & 0 \\ {m_{31} } & 0 & {m_{33} } \\ \end{array} } \right], \, K = \left[ {\begin{array}{*{20}c} {k_{11} } & 0 & {k_{13} } \\ 0 & {k_{22} } & {k_{23} } \\ {k_{31} } & {k_{32} } & {k_{33} } \\ \end{array} } \right] $$

where

$$ \begin{gathered} m_{11} = I_{1} {, }m_{13} = I_{2} \hfill \\ m_{22} = I_{1} \hfill \\ m_{31} = I_{2} , \, m_{33} = I_{3} \hfill \\ \end{gathered} $$
$$ \begin{gathered} k_{11} = - A_{11} \beta^{2} , \, k_{13} = - B_{11} \beta^{2} , \, \hfill \\ k_{22} = - A_{55} \beta^{2} - k_{w} - k_{p} \beta^{2} + N_{x}^{T} \beta^{2} , \, k_{23} = A_{55} \beta i \hfill \\ k_{31} = - B_{11} \beta^{2} , \, k_{32} { = } - A_{55} \beta i, \, k_{33} = - D_{11} \beta^{2} - A_{55} \hfill \\ \end{gathered} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Parsi, M. Wave propagation analysis of functionally graded graphene origami-enabled auxetic metamaterial beams resting on an elastic foundation. Acta Mech 234, 6169–6190 (2023). https://doi.org/10.1007/s00707-023-03705-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03705-0

Navigation