Skip to main content
Log in

Equimomental systems representations of point-masses of planar rigid-bodies

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a study on the equimomental systems of point-masses of planar rigid bodies. In this work, the equimomental systems of three point-masses of planar rigid bodies are investigated using the concept of pseudo-inertia matrix. It is found that given a planar rigid body, it is always possible to determine an equimomental system of three equal masses located at the vertices of an isosceles triangle. A procedure is presented to determine equimomental systems with different masses, guaranteeing that the masses are positive. It is shown that it is always possible to choose an equimomental system of three point-masses located at the vertices of an isosceles triangle with a prescribed position of one mass. The conditions for prescribing the position of two and three point-masses are also investigated. A first idealized example shows the step-by-step procedure for determining an equimomental system of three point-masses of a planar rigid body. The proposed model is applied to a symmetric connecting rod in a second example due to its wide use in combustion engines. A third example shows an equimomental system of an asymmetric bucket of an excavator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Seyferth, W.: Massenersatz durch punktmassen in räumlichen getrieben. Mech. Mach. Theory 9, 49–59 (1974). https://doi.org/10.1016/0094-114X(74)90007-X

    Article  Google Scholar 

  2. Sommerville, D.M.Y.: Equimomental tetrads of a rigid body. In: Mathematical Notes, vol. 26 (1930). https://doi.org/10.1017/S1757748900002127

  3. Selig, J.M.: Equimomental systems and robot dynamics. In: Proceedings of the IMA Conference on Mathematics of Robotics. Institute of Mathematics and its Applications, Southend-on-Sea, pp. 1–8 (2015). https://doi.org/10.19124/ima.2015.001.21

  4. Wenglarz, R., Fogarasy, A., Maunder, L.: Simplified dynamic models. Engineering 208(5391), 194 (1969)

    Google Scholar 

  5. Huang, N.C.: Equimomental system of rigidly connected equal particles. J. Guid. Control. Dyn. 16, 1194–1196 (1993). https://doi.org/10.2514/3.21150

    Article  Google Scholar 

  6. Chaudhary, H., Saha, S.K.: Dynamics and Balancing of Multibody Systems vol. 37. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-78179-0

  7. Routh, E.J.: A Treatise on the Dynamics of a System of Rigid Bodies. Elemementary Part I, vol. 1. Dover Publication Inc, New York (1905)

    MATH  Google Scholar 

  8. Laus, L.P., Selig, J.M.: Rigid body dynamics using equimomental systems of point-masses. Acta Mech. 231, 221–236 (2020). https://doi.org/10.1007/s00707-019-02543-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Chica, F.J.G., Polo, M.P., Molina, M.P.: Note on an apparently forgotten theorem about solid rigid dynamics. Eur. J. Phys. 35, 045003 (2014). https://doi.org/10.1088/0143-0807/35/4/045003

    Article  MATH  Google Scholar 

  10. Chaudhary, H., Saha, S.K.: Balancing of four-bar linkages using maximum recursive dynamic algorithm. Mech. Mach. Theory 42, 216–232 (2007). https://doi.org/10.1016/j.mechmachtheory.2006.02.008

    Article  MathSciNet  MATH  Google Scholar 

  11. Chaudhary, H., Saha, S.K.: Balancing of shaking forces and shaking moments for planar mechanisms using the equimomental systems. Mech. Mach. Theory 43, 310–334 (2008). https://doi.org/10.1016/j.mechmachtheory.2007.04.003

    Article  MATH  Google Scholar 

  12. Chaudhary, K., Chaudhary, H.: Dynamic balancing of planar mechanisms using genetic algorithm. J. Mech. Sci. Technol. 28, 4213–4220 (2014). https://doi.org/10.1007/s12206-014-0934-4

    Article  Google Scholar 

  13. Chaudhary, K., Chaudhary, H.: Optimal dynamic balancing and shape synthesis of links in planar mechanisms. Mech. Mach. Theory 93, 127–146 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.07.006

    Article  Google Scholar 

  14. Sherwood, A.A., Hockey, B.A.: The optimisation of mass distribution in mechanisms using dynamically similar systems. J. Mech. 4, 243–260 (1969). https://doi.org/10.1016/0022-2569(69)90005-6

    Article  Google Scholar 

  15. de Jong, J., van Dijk, J., Herder, J.: On the Dynamic Equivalence of Planar Mechanisms, an Inertia Decomposition Method, pp. 51–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44156-6_6

  16. Gössner, S.: Equimomental polygonal systems. Duisburg-Essen Publications online, 1–7 (2021). https://doi.org/10.17185/duepublico/74044

  17. Chaudhary, H., Saha, S.K.: Equimomental system and its applications. In: Volume 3: Dynamic Systems and Controls, Symposium on Design and Analysis of Advanced Structures, and Tribology, pp. 33–42. ASMEDC, Torino (2006). https://doi.org/10.1115/ESDA2006-95066

  18. Gupta, V., Saha, S.K., Chaudhary, H.: Optimum design of serial robots. J. Mech. Des. (2019). https://doi.org/10.1115/1.4042623

    Article  Google Scholar 

  19. Kumani, D.S., Chaudhary, H.: Minimizing constraint forces and moments of manipulators using teaching-learning-based optimization and octahedron point mass model. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 232, 3500–3511 (2018). https://doi.org/10.1177/0954406217736341

    Article  Google Scholar 

  20. Gupta, V., Chaudhary, H., Saha, S.K.: Dynamics and actuating torque optimization of planar robots. J. Mech. Sci. Technol. 29, 2699–2704 (2015). https://doi.org/10.1007/s12206-015-0517-z

    Article  Google Scholar 

  21. Fábián, B., Thallmair, S., Hummer, G.: Optimal bond-constraint topology for molecular dynamics simulations of cholesterol. Theor Comput Chem (2022). https://doi.org/10.26434/chemrxiv-2022-t41rx

    Article  Google Scholar 

  22. Tischler, C., Downing, D., Lucas, S., Martins, D.: Rigid-body inertia and screw geometry. In: Proceedings of a Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball Upon the 100th Anniversary of A Treatise on the Theory of Screws (2000)

  23. Selig, J.M., Martins, D.: On the line geometry of rigid-body inertia. Acta Mech. 225, 3073–3101 (2014). https://doi.org/10.1007/s00707-014-1103-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Routh, E.J.: An Elementary Treatise on the Dynamics of a System of Rigid Bodies: With Numerous Examples. Macmillan and Company, Limited, London (1877)

    Google Scholar 

  25. Kibble, T., Berkshire, F.H.: Classical Mechanics, 5th edn. Imperial College Press, London (2004)

    Book  MATH  Google Scholar 

  26. Selig, J.M.: Geometric Fundamentals of Robotics. Springer, New York (2005). https://doi.org/10.1007/b138859

    Book  MATH  Google Scholar 

  27. Baranov, G., Rojas, G., et al.: Curso de la Teoría de Mecanismos Y Máquinas, vol. 2. Mir, Moscu (1979)

    Google Scholar 

  28. Komatsu: Hydraulic excavator PC400 (2017). https://www.komatsu.com. Accessed 19 Dec 2022

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and CAPES- PRINT/UFSC AUXPE 2835/2018 and CNPq under project PQ 312117/2017-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neider Nadid Romero Nuñez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuñez, N.N.R., Vieira, R.S. & Martins, D. Equimomental systems representations of point-masses of planar rigid-bodies. Acta Mech 234, 5565–5580 (2023). https://doi.org/10.1007/s00707-023-03683-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03683-3

Navigation