Skip to main content
Log in

Pulsed excitation heating of semiconductor material and its thermomagnetic response on the basis of fourth-order MGT photothermal model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

When designing mechanical equipment, it’s important to consider the photothermal impacts in addition to mechanical ones. This is because photothermal effects can have a significant influence on equipment performance. In this paper, a new theory of thermo-photoelasticity is presented that explains the processes of photoelectron carriers and heat transport in homogeneous and isotropic viscoelastic semiconductor materials. The proposed model combines fourth-order Moore–Gibson–Thompson (MGT) thermoelasticity with the coupled plasma equation. We also include the viscoelastic linear Kelvin–Voigt model, which represents the viscous nature of matter, as part of the model derivation process. We study the problem of a thermoelastic semiconductor medium with stable elastic properties and its traction-free surface exposed to heat flux in the form of laser pulses. To provide analytical solutions for all the variables studied, we use the normal mode approach as the methodology. Furthermore, we estimate the effects of laser pulse rise time, viscosity, and thermal parameters on all fields studied with the help of some comparisons displayed in different illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(\lambda_{{\text{e}}} ,{ }\mu_{{\text{e}}}\) :

Elastic constants

\(\alpha_{{\text{t}}}\) :

Coefficient of thermal expansion

\(\alpha_{1} ,{ }\alpha_{2}\) :

Viscoelastic relaxation times

\({\upgamma } = \left( {3\lambda + 2\mu } \right)\alpha_{{\text{t}}}\) :

Thermal coupling coefficient

\(T_{0}\) :

Initial temperature

\(\theta = T - T_{0}\) :

Temperature increment

\(T\) :

Absolute temperature

\(C_{e}\) :

Specific heat

\(e = {\text{div}}\;{\mathbf{u}}\) :

Cubical dilatation

\(\sigma_{ij}\) :

Stress tensor

\(e_{ij}\) :

Strain tensor

\(N\) :

Carrier density

\(\overrightarrow {H}\) :

Heat flow vector

\({\varvec{u}}\) :

Displacement vector

\(\overrightarrow {X}\) :

Position vector

\(\overrightarrow {F}\) :

External force vector

\(\mu_{0}\) :

Magnetic permeability

\(K\) :

Thermal conductivity

\(\rho\) :

Material density

\(Q\) :

Heat source

\(K^{*}\) :

Ate of thermal conductivity

\(\delta_{ij}\) :

Kronecker′s delta function

\(\nabla^{2}\) :

Laplacian operator

\(\tau_{q}\) :

Phase lag of heat flow

\(\tau_{\theta }\) :

Phase lag of temperature gradient

\(d_{n}\) :

Electronic deformation coefficient

\(E_{{\text{g}}}\) :

Semiconductor gap energy

\(\kappa\) :

Thermal activation coupling parameter

\(\gamma_{n} = \left( {3\lambda + 2\mu } \right)d_{n}\,\tau_{B}\) :

Bulk-free carrier lifetime

\(\vartheta ,\left( {\dot{\vartheta } = \theta } \right)\) :

Thermal displacement

\(D_{E}\) :

Ambipolar diffusion parameter

\(\overrightarrow {J}\) :

Current density

\(\varepsilon_{0}\) :

Electric permeability

References

  1. Gafel, H.S.: Fractional order study of the impact of a photo thermal wave on a semiconducting medium under magnetic field and thermoplastic theories. Inf. Sci. Lett. 11(2), 629–638 (2022)

    Google Scholar 

  2. McDonald, F.A., Wetsel, G.C., Jr.: Generalized theory of the photoacoustic effect. J. Appl. Phys. 49(4), 2313–2322 (1978)

    Google Scholar 

  3. Stearns, R., Kino, G.: Effect of electronic strain on photoacoustic generation in silicon. Appl. Phys. Lett. 47(10), 1048–1050 (1985)

    Google Scholar 

  4. Abbas, I.A., Alzahrani, F.S., Berto, F.: The effect of fractional derivative on photo-thermoelastic interaction in an infinite semiconducting medium with a cylindrical hole. Eng. Solid Mech. 6, 275–284 (2018)

    Google Scholar 

  5. Todorović, D.: Photothermal and electronic elastic effects in microelectromechanical structures. Rev Sci Instrum 74(1), 578–581 (2003)

    Google Scholar 

  6. Todorović, D.: Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 74(1), 582–585 (2003)

    Google Scholar 

  7. Song, Y.Q., Bai, J.T., Ren, Z.Y.: Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mech. 223(7), 1545–1557 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Chteoui, R., Lotfy, Kh., El-Bary, A.A., Allan, M.M.: Hall current effect of magnetic-optical-elastic-thermal-diffusive non-local semiconductor model during electrons-holes excitation processes. Crystals 12, 1680 (2022)

    Google Scholar 

  9. Sharma, N., Kumar, R.: Photo-thermoelastic investigation of semiconductor material due to distributed loads. J. Solid Mech. 13(2), 202–212 (2021)

    Google Scholar 

  10. Alhejaili, W., Lotfy, Kh., El-Bary, A., Saeed, A.M., Roshdy, E.M.: Photo-thermo-mechanical-elastic interactions due to Hall current in functionally graded (FG) semiconductor excited medium with hyperbolic two-temperature. Alex. Eng. J. 61(12), 11623–11633 (2022)

    Google Scholar 

  11. Mondal, S., Sur, A.: Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses. Waves Rand. Comp. Media 31(6), 1835–1858 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Zakaria, K., Sirwah, M.A., Abouelregal, A.E., Rashid, A.: F, Photothermoelastic survey with memory-dependent response for a rotating solid cylinder under varying heat flux via dual phase lag model. Pramana. J. Phys. 96, 219 (2022)

    Google Scholar 

  13. Abouelregal, A.E., Sedighi, H.M., Eremeyev, V.A.: Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model. Continuum Mech. Thermodyn. 35(1), 81–102 (2022)

    MathSciNet  MATH  Google Scholar 

  14. Abouelregal, A.E., Rayan, A., Mostafa, D.M.: Transient responses to an infinite solid with a spherical cavity according to the MGT thermo-diffusion model with fractional derivatives without nonsingular kernels. Waves Rand. Comp. Media (2022). https://doi.org/10.1080/17455030.2022.2147242

    Article  Google Scholar 

  15. Feng, J., Safaei, B., Qin, Z., Chu, F.: Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene. Comp. Sci. Tech. 233, 109925 (2023)

    Google Scholar 

  16. Safaei, B., Onyibo, E.C., Goren, M., Kotrasova, K., Yang, Z., Arman, S., Asmael, M.: Free vibration investigation on RVE of proposed honeycomb sandwich beam and material selection optimization. Facta Univ. Series Mech. Eng. 21(1), 31–50 (2023)

    Google Scholar 

  17. Sarkon, G.K., Safaei, B., Kenevisi, M.S., Arman, S., Zeeshan, Q.: State-of-the-art review of machine learning applications in additive manufacturing; from design to manufacturing and property control. Arch. Computat. Methods Eng. 29, 5663–5721 (2022)

    Google Scholar 

  18. İnada, A.A., Arman, S., Safaei, B.: A novel review on the efficiency of nanomaterials for solar energy storage systems. J. Energy Stor. 55, 105661 (2022)

    Google Scholar 

  19. Alhijazi, M., Safaei, B., Zeeshan, Q., Arman, S., Asmael, M.: Prediction of elastic properties of thermoplastic composites with natural fibers. J. Text. Inst. (2022). https://doi.org/10.1080/00405000.2022.2131352

    Article  Google Scholar 

  20. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    MATH  Google Scholar 

  21. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    MATH  Google Scholar 

  22. Tzou, D.Y.: A unified field approach for heat conduction from macro-to-microscale. J. Heat Transfer 117, 8–16 (1995)

    Google Scholar 

  23. Tzou, D.Y.: Experimental support for the lagging behavior in heat propagation, Journal of Thermophys. Heat Transf. 9(4), 686 (1995)

    Google Scholar 

  24. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A. 432, 171–194 (1991)

    MathSciNet  MATH  Google Scholar 

  25. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15(2), 253–264 (1992)

    MathSciNet  Google Scholar 

  26. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress 30(3), 231–238 (2007)

    Google Scholar 

  28. Lasiecka, I., Wang, X.: Moore–Gibson–Thompson equation with memory, part II: general decay of energy. J. Diff. Equ. 259(12), 7610–7635 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids 24(12), 4020–4031 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 1, 100006 (2020)

    Google Scholar 

  31. Abouelregal, A.E.: Generalized thermoelastic MGT model for a functionally graded heterogeneous unbounded medium containing a spherical hole. Eur. Phys. J. Plus 137, 953 (2022)

    Google Scholar 

  32. Aboueregal, A.E., Sedighi, H.M.: The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore–Gibson–Thompson heat conduction model. Proc. Inst. Mech. Eng. Part L J. Mat. Design Appl. 235(5), 1004–1020 (2021)

    Google Scholar 

  33. Abouelregal, A.E., Alesemi, M.: Evaluation of the thermal and mechanical waves in anisotropic fiber-reinforced magnetic viscoelastic solid with temperature-dependent properties using the MGT thermoelastic model. Case Stud. Therm. Eng. 36, 102187 (2022)

    Google Scholar 

  34. Abouelregal, A.E., Ersoy, H., Civalek, Ö.: Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole. Mathematics 9(13), 1536 (2021)

    Google Scholar 

  35. Sarkar, N., Mondal, S., Othman, M.I.A.: L-S theory for the propagation of the photothermal waves in a semiconducting nonlocal elastic medium. Waves Rand. Comp. Media 32(6), 2622–2635 (2022)

    MATH  Google Scholar 

  36. Mallik, S.H., Kanoria, M.: Generalized thermoviscoelastic interaction due to periodically varying heat source with three–phase–lag effect. Euro. J. Mech. A/Solids 29, 695–703 (2010)

    MATH  Google Scholar 

  37. Sharma, S.R., Sharma, M.K., Sharma, D.K.: Vibrations of inhomogeneous visco thermoelastic nonlocal hollow sphere under the effect of three-phase-lag model. J. Solid Mech. 13(1), 95–113 (2021)

    MathSciNet  Google Scholar 

  38. Kong, J.A.: Theory of Electromagnetic Waves. John Wiley & Sons Inc, New York (1975)

    Google Scholar 

  39. Ball, D.W.: Field Guide to Spectroscopy. SPIE Press, Bellingham (2006)

    Google Scholar 

  40. Abouelregal, A.E., Mohammad-Sedighi, H., Shirazi, A.H., Malikan, M., Eremeyev, V.A.: Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach. Continuum Mech. Thermodyn. 34(4), 1067–1085 (2022)

    MathSciNet  Google Scholar 

  41. Nadeem, M., He, J.H., He, C.H., Sedighi, H.M., Shirazi, A.: A numerical solution of nonlinear fractional newell-whitehead-segel equation using natural transform. Twms J. Pure Appl. Math. 13(2), 168–82 (2022)

    Google Scholar 

  42. Yavari, A., Abolbashari, M.H.: Generalized thermoelastic waves propagation in non-uniform rational b-spline rods under quadratic thermal shock loading using isogeometric approach. Iran J. Sci. Technol. Trans. Mech. Eng. 46, 43–59 (2022)

    Google Scholar 

  43. Atta, D.: Thermal diffusion responses in an infinite medium with a spherical cavity using the atangana-baleanu fractional operator. J. Appl. Comput. Mech. 8(4), 1358–1369 (2022)

    MathSciNet  Google Scholar 

  44. Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A., Shirazi, A.H.: Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load. Facta Univ. Ser. Mech. Eng. 19(4), 633–656 (2021)

    Google Scholar 

  45. Jena, S.K., Chakraverty, S., Malikan, M., Mohammad-Sedighi, H.: Hygro-magnetic vibration of the single-walled carbon nanotube with nonlinear temperature distribution based on a modified beam theory and nonlocal strain gradient model. Int. J. Appl. Mech. 12(05), 2050054 (2020)

    Google Scholar 

  46. Kaur, I., Singh, K.: Influence of time harmonic source frequency in a fibre-reinforced magneto-thermoelastic material with new modified couple stress and hyperbolic two-temperature theory. Iran J. Sci. Technol. Trans. Mech. Eng. (2022). https://doi.org/10.1007/s40997-022-00562-5

    Article  Google Scholar 

  47. Awwad, E., Abouelregal, A.E., Hassan, A.: Thermoelastic memory-dependent responses to an infinite medium with a cylindrical hole and temperature-dependent properties. J. Appl. Comput. Mech. 7(2), 870–882 (2021)

    Google Scholar 

  48. Arias, I., Achenbach, J.D.: Thermoelastic generation of ultrasound by line-focused laser irradiation. Int. J. Solids Struct. 40(25), 6917–6935 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Askar, S., Abouelregal, A.E., Marin, M., Foul, A.: Photo-thermoelasticity heat transfer modeling with fractional differential actuators for stimulated nano-semiconductor media. Symmetry 15, 656 (2023)

    Google Scholar 

  50. Spicer, J., Hurley, D.: Epicentral and near epicenter surface displacements on pulsed laser irradiated metallic surfaces. Appl. Phys. Lett. 68(25), 3561–3563 (1996)

    Google Scholar 

  51. Veres, I.A., Berer, T., Burgholzer, P.: Numerical modeling of thermoelastic generation of ultrasound by laser irradiation in the coupled thermoelasticity. Ultrasonics 53(1), 141–149 (2013)

    Google Scholar 

  52. McDonald, F.A.: On the precursor in laser-generated ultrasound waveforms in metals. Appl. Phys. Lett. 56(3), 230–232 (1990)

    Google Scholar 

  53. Rämer, A., Osmani, O., Rethfeld, B.: Laser damage in silicon: energy absorption, relaxation, and transport. J. Appl. Phys. 116(5), 053508 (2014)

    Google Scholar 

  54. Yang, J., Zhang, D., Wei, J., Shui, L., Pan, X., Lin, G., Sun, T., Tang, Y.: The effect of different pulse widths on lattice temperature variation of silicon under the action of a picosecond laser. Micromachines 13, 1119 (2022)

    Google Scholar 

  55. Putignano, C., Reddyhoff, T., Dini, D.: The influence of temperature on viscoelastic friction properties. Tribol. Int. 100, 338–343 (2016)

    Google Scholar 

  56. Carbone, G., Putignano, C.: A novel methodology to predict sliding/rolling friction in viscoelastic materials: theory and experiments. J. Mech. Phys. Solids 61(8), 1822–1834 (2013)

    MathSciNet  Google Scholar 

  57. Mei, M., He, Y., Wei, K., Duan, S., Li, M., Yang, X.: Modeling the temperature-dependent viscoelastic behavior of glass fabric with binder in the compaction process. Polym. Compos. 42(6), 3038–3050 (2021)

    Google Scholar 

Download references

Acknowledgements

H.M. Sedighi is grateful to the Research Council of Shahid Chamran University of Ahvaz for its financial support (Grant no. SCU.EM1401.98). The first three authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education, Saudi Arabia, for funding this research work through the project number (IFKSURG-1232).

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results, and the final text was reviewed through the contribution of all authors.

Corresponding authors

Correspondence to Ahmed E. Abouelregal or Hamid M. Sedighi.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askar, S.S., Abouelregal, A.E., Foul, A. et al. Pulsed excitation heating of semiconductor material and its thermomagnetic response on the basis of fourth-order MGT photothermal model. Acta Mech 234, 4977–4995 (2023). https://doi.org/10.1007/s00707-023-03639-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03639-7

Navigation