Skip to main content

Advertisement

Log in

Rayleigh waves in a centrosymmetric flexoelectric layer attached to elastic substrate

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

To explore the possibility of the application of pure flexoelectric devices, the Rayleigh wave propagation in the layered composite structure is investigated in this paper. Considering the flexoelectricity of centrosymmetric crystal materials, we obtain the formulas of Rayleigh waves in layered composite structures from the virtual work principle. By solving the homogeneous linear differential equations together with the consistent boundary conditions, the dispersion relation of Rayleigh waves is apparent. Numerical results show the influences of the flexoelectric coefficient and nonlocal characteristic length on the Rayleigh wave propagation. It is found that the phase velocity is dependent upon the three flexoelectric coefficients, nonlocal characteristic length, and thin-layer thickness. The mode shape shows that the energy is near the upper surface of the flexoelectric layer with a large normalized wave number. The distribution of the electric potential suggests the possible location of electrodes. This theoretical work could guide the designing of Rayleigh waves-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. White, R.M., Voltmer, F.W.: Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett. 7(12), 314–316 (1965)

    Google Scholar 

  2. Lindner, G.: Sensors and actuators based on surface acoustic waves propagating along solid–liquid interfaces. J. Phys. D. Appl. Phys. 41(12), 123002 (2008)

    Google Scholar 

  3. Go, D.B., Atashbar, M.Z., Ramshani, Z., Chang, H.C.: Surface acoustic wave devices for chemical sensing and microfluidics: a review and perspective. Anal. Methods-UK 9(28), 4112–4134 (2017)

    Google Scholar 

  4. Caliendo, C., Laidoudi, F.: Experimental and theoretical study of multifrequency surface acoustic wave devices in a single Si/SiO2/ZnO piezoelectric structure. Sensors 20(5), 1380 (2020)

    Google Scholar 

  5. Jakubik, W.P.: Surface acoustic wave-based gas sensors. Thin Solid Films 520(3), 986–993 (2011)

    Google Scholar 

  6. Asad, M., Sheikhi, M.H.: Surface acoustic wave based H2S gas sensors incorporating sensitive layers of single wall carbon nanotubes decorated with Cu nanoparticles. Sens. Actuat. B-Chem. 198, 134–141 (2014)

    Google Scholar 

  7. Rana, L., Gupta, R., Kshetrimayum, R., Tomar, M., Gupta, V.: Fabrication of surface acoustic wave based wireless NO2 gas sensor. Surf. Coat. Tech. 343, 89–92 (2018)

    Google Scholar 

  8. Lamanna, L., Rizzi, F., Guido, F., Algieri, L., Marras, S., Mastronardi, V.M., De Vittorio, M.: Flexible and transparent aluminum-nitride-based surface-acoustic-wave device on polymeric polyethylene naphthalate. Adv. Electron. Mater. 5(6), 1900095 (2019)

    Google Scholar 

  9. Liu, B., Chen, X., Cai, H., Ali, M.M., Tian, X., Tao, L., Ren, T.: Surface acoustic wave devices for sensor applications. J. Semicond. 37(2), 021001 (2016)

    Google Scholar 

  10. Länge, K.: Bulk and surface acoustic wave sensor arrays for multi-analyte detection: a review. Sensors 19(24), 5382 (2019)

    Google Scholar 

  11. Xu, Z., Yuan, Y.J.: Implementation of guiding layers of surface acoustic wave devices: a review. Biosens. Bioelectron. 99, 500–512 (2018)

    Google Scholar 

  12. Liu, Y., Cai, Y., Zhang, Y., Tovstopyat, A., Liu, S., Sun, C.: Materials, design, and characteristics of bulk acoustic wave resonator: a review. Micromachines 11(7), 630 (2020)

    Google Scholar 

  13. Morgan, D.: Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing. Academic Press (2010)

    Google Scholar 

  14. Jiang, Y., Zhao, Y., Zhang, L., Liu, B., Li, Q., Zhang, M., Pang, W.: Flexible film bulk acoustic wave filters toward radiofrequency wireless communication. Small 14(20), 1703644 (2018)

    Google Scholar 

  15. Ruppel, C.C.: Acoustic wave filter technology–a review. IEEE T. Ultrason. Ferr. 64(9), 1390–1400 (2017)

    Google Scholar 

  16. Su, R., Shen, J., Lu, Z., Xu, H., Niu, Q., Xu, Z., Pan, F.: Wideband and low-loss surface acoustic wave filter based on 15° YX-LiNbO3/SiO2/Si structure. IEEE Electr. Device L. 42(3), 438–441 (2021)

    Google Scholar 

  17. Luo, J.T., Zeng, F., Pan, F., Li, H.F., Niu, J.B., Jia, R., Liu, M.: Filtering performance improvement in V-doped ZnO/diamond surface acoustic wave filters. Appl. Surf. 256(10), 3081–3085 (2010)

    Google Scholar 

  18. Luo, J.T., Pan, F., Fan, P., Zeng, F., Zhang, D.P., Zheng, Z.H., Liang, G.X.: Cost-effective and high frequency surface acoustic wave filters on ZnO: Fe/Si for low-loss and wideband application. Appl. Phys. Lett. 101(17), 172909 (2012)

    Google Scholar 

  19. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. mater. 42(2), 475–487 (1994)

    Google Scholar 

  20. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    MATH  Google Scholar 

  21. Li, X.F., Wang, B.L., Lee, K.Y.: Size effects of the bending stiffness of nanowires. J. Appl. Phys. 105(7), 074306 (2009)

    Google Scholar 

  22. Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B. 74(1), 014110 (2006)

    Google Scholar 

  23. Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B. 77(12), 125424 (2008)

    Google Scholar 

  24. Liang, X., Hu, S., Shen, S.: Bernoulli-Euler dielectric beam model based on strain-gradient effect. J. Appl. Mech -T. ASME 80(4), 044502 (2013)

    Google Scholar 

  25. Zhu, W., Fu, J.Y., Li, N., Cross, L.: Piezoelectric composite based on the enhanced flexoelectric effects. Appl. Phys. Lett. 89(19), 192904 (2006)

    Google Scholar 

  26. Chu, B., Zhu, W., Li, N., Cross, L.E.: Flexure mode flexoelectric piezoelectric composites. J. Appl. Phys. 106(10), 104109 (2009)

    Google Scholar 

  27. Sharma, N.D., Landis, C.M., Sharma, P.: Piezoelectric thin-film superlattices without using piezoelectric materials. J. Appl. Phys. 108(2), 024304 (2010)

    Google Scholar 

  28. Deng, Q., Lv, S., Li, Z., Tan, K., Liang, X., Shen, S.: The impact of flexoelectricity on materials, devices, and physics. J. Appl. Phys. 128(8), 080902 (2020)

    Google Scholar 

  29. Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. -Solid State 5(10), 2069–2070 (1964)

    Google Scholar 

  30. Meyer, R.B.: Piezoelectric effects in liquid crystals. Phys. Rev. Lett. 22(18), 918 (1969)

    Google Scholar 

  31. Sharma, J.N., Sharma, R.: Modelling of thermoelastic Rayleigh waves in a solid underlying a fluid layer with varying temperature. Appl. Math. Model 33(3), 1683–1695 (2009)

    Google Scholar 

  32. Pang, Y., Liu, J., Wang, Y., Fang, D.: Wave propagation in piezoelectric/piezomagnetic layered periodic composites. Acta Mech. Solida Sin. 21(6), 483–490 (2008)

    Google Scholar 

  33. Chaudhary, S., Sahu, S.A., Singhal, A.: Analytic model for Rayleigh wave propagation in piezoelectric layer overlaid orthotropic substratum. Acta Mech. 228(2), 495–529 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Tian, R., Nie, G., Liu, J., Pan, E., Wang, Y.: On Rayleigh waves in a piezoelectric semiconductor thin film over an elastic half-space. Int. J. Mech. Sci. 204, 106565 (2021)

    Google Scholar 

  35. Wang, B., Gu, Y., Zhang, S., Chen, L.Q.: Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. 106, 100570 (2019)

    Google Scholar 

  36. Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Kalinin, S.V.: Lost surface waves in nonpiezoelectric solids. Phys. Rev. B. 96(4), 045411 (2017)

    Google Scholar 

  37. Mirzade, F.K.: Influence of flexoelectricity on the propagation of nonlinear strain waves in solids. Phys. Status Solidi B 244(2), 529–544 (2007)

    Google Scholar 

  38. Hu, T., Yang, W., Liang, X., Shen, S.: Wave propagation in flexoelectric microstructured solids. J. Elasticity 130(2), 197–210 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Jiao, F.Y., Wei, P.J., Li, Y.Q.: Wave propagation in piezoelectric medium with the flexoelectric effect considered. J. Mech. 35(1), 51–63 (2019)

    Google Scholar 

  40. Georgiadis, H.G., Vardoulakis, I., Velgaki, E.: Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. J. Elasticity 74(1), 17–45 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Qi, L.: Rayleigh wave propagation in semi-infinite flexoelectric dielectrics. Phys. Scripta 94(6), 065803 (2019)

    Google Scholar 

  42. Yang, W., Liang, X., Deng, Q., Shen, S.: Rayleigh wave propagation in a homogeneous centrosymmetric flexoelectric half-space. Ultrasonics 103, 106105 (2020)

    Google Scholar 

  43. Krishnamoorthy, S., Iliadis, A.A.: Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2/(100) Si substrates. Solid State Electron. 52(11), 1710–1716 (2008)

    Google Scholar 

  44. Miu, D., Constantinoiu, I., Dinca, V., Viespe, C.: Surface acoustic wave biosensor with laser-deposited gold layer having controlled porosity. Chemosensors 9(7), 173 (2021)

    Google Scholar 

  45. Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. CMC. Comput. Mater. Con. 13(1), 63 (2009)

    Google Scholar 

  46. Lazar, M., Maugin, G.A., Aifantis, E.C.: Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43(6), 1787–1817 (2006)

    MATH  Google Scholar 

  47. Li, Y., Wei, P.: Reflection and transmission of plane waves at the interface between two different dipolar gradient elastic half-spaces. Int. J. Solids Struct. 56, 194–208 (2015)

    Google Scholar 

  48. Jiao, F., Wei, P., Li, Y.: Wave propagation through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces. Ultrasonics 82, 217–232 (2018)

    Google Scholar 

  49. Yang, W., Hu, T., Liang, X., Shen, S.: On band structures of layered phononic crystals with flexoelectricity. Arch. Appl. Mech. 88(5), 629–644 (2018)

    Google Scholar 

  50. Su, J., Kuang, Z.B., Liu, H.: Love wave in ZnO/SiO2/Si structure with initial stresses. J. Sound Vib. 286(4–5), 981–999 (2005)

    Google Scholar 

  51. Hou, Y., Tian, D., Chu, B.: Flexoelectric response of (1–x) BaTiO3-xSrTiO3 ceramics. Ceram. Int. 46(9), 12928–12932 (2020)

    Google Scholar 

  52. Zang, J., Fang, B., Zhang, Y.W., Yang, T.Z., Li, D.H.: Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory. Physica E 63, 147–150 (2014)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the 111 Project (Grant No. B18040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihao Lv.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, S., Shen, S. Rayleigh waves in a centrosymmetric flexoelectric layer attached to elastic substrate. Acta Mech 234, 4649–4664 (2023). https://doi.org/10.1007/s00707-023-03627-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03627-x

Navigation