Skip to main content
Log in

Size-dependent couple stress natural frequency analysis via a displacement-based variational method for two- and three-dimensional problems

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

After deriving a novel Principle of Stationary Correlated Action for the general bi-anisotropic case of size-dependent materials governed by consistent couple stress theory, a Ritz Spline Method is created for free vibration analysis. The underlying formulation is then specialized for isotropic materials requiring the specification of only a single couple stress material parameter that can be defined in terms of an effective intrinsic material length scale. The framework permits both two- and three-dimensional analysis using a multivariate B-spline basis that enables the flexibility to select a range of piecewise polynomial orders and higher levels of continuity, as required in couple stress theory. To validate the formulation and numerical implementation, two example problems involving a cantilever with rectangular cross section and a free-free cylindrical tube are studied in detail. Interestingly, one finds that while couple stress effects tend to stiffen the structures, the effect is not uniform. The natural frequencies of some modes are significant enhanced as the couple stress effective length scale increases, while other modes are nearly or completely unaffected. In addition, the important three-dimensional nature of several aspects of consistent couple stress continuum mechanics is clearly observed from these two basic problems of free vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ainsworth, M.: Essential boundary conditions and multi-point constraints in finite element analysis. Comput. Methods Appl. Mech. Eng. 190, 6323–6339 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ansari, R., Gholami, R., Rouhi, H.: Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories. Compos. Part B 43, 2985–2989 (2012)

    Article  Google Scholar 

  3. Barati, M.R., Shahverdi, H.: Dynamic modeling and vibration analysis of double-layered multi-phase porous nanocrystalline silicon nanoplate systems. Eur. J. Mech. A Solids 66, 256–268 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cosserat, E., Cosserat, F.: Théorie des Corps Déformables (Theory of Deformable Bodies). A. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  5. Dargush, G.F., Apostolakis, G., Hadjesfandiari, A.R.: Two- and three-dimensional size-dependent couple stress response using a displacement-based variational method. Eur. J. Mech. A Solids 88, 104268 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Darrall, B.T., Dargush, G.F., Hadjesfandiari, A.R.: Finite element Lagrange multiplier formulation for size-dependent skew-symmetric couple-stress planar elasticity. Acta Mech. 225, 195–212 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dassault Systemes: Abaqus/Standard (2019)

  8. Deep, S., Goyal, R., Sharma, V.: Dispersion of Rayleigh waves in an elastic layer imperfectly attached to a microcontinuum substrate. Mech. Solids 57, 870–882 (2022)

    Article  Google Scholar 

  9. Deng, G., Dargush, G.F.: Mixed Lagrangian formulation for size-dependent couple stress elastodynamic response. Acta Mech. 227, 3451–3473 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deng, G., Dargush, G.F.: Mixed Lagrangian formulation for size-dependent couple stress elastodynamic and natural frequency analyses. Int. J. Numer. Methods Eng. 109, 809–836 (2017)

    Article  MathSciNet  Google Scholar 

  11. Ebrahimi, F., Barati, M.R., Civalek, Ö.: Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36, 953–964 (2020)

    Article  Google Scholar 

  12. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  13. Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture 2, pp. 662–729. Academic Press, New York (1968)

    Google Scholar 

  14. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guarín-Zapata, N., Gomez, J., Valencia, C., Dargush, G.F., Hadjesfandiari, A.R.: Finite element modeling of micropolar-based phononic crystals. Wave Motion 92, 102406 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guarín-Zapata, N., Gomez, J., Hadjesfandiari, A.R., Dargush, G.F.: Variational principles and finite element Bloch análisis in couple stress elastodynamics. Wave Motion 106, 102809 (2021)

    Article  MATH  Google Scholar 

  17. Guo, J., Chen, J., Pan, E.: Free vibration of three-dimensional anisotropic layered composite nanoplates based on modified couple-stress theory. Phys. E 87, 98–106 (2017)

    Article  Google Scholar 

  18. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011)

    Article  Google Scholar 

  19. Höllig, K.: Finite Element Methods with B-Splines, pp. 10–21. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  20. Höllig, K., Reif, U., Wipper, J.: Weighted extended B-spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39, 442–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Höllig, K., Reif, U., Wipper, J.: Multigrid methods with web-splines. Numer. Math. 91, 237–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hughes, T.J.R., Reali, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199, 301–313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kagan, P., Fischer, A., Bar-Yoseph, P.Z.: Mechanically based models: adaptive refinement for B-spline finite element. Int. J. Numer. Methods Eng. 57, 1145–1175 (2003)

    Article  MATH  Google Scholar 

  25. Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. Ser. B. Phys. Sci. 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  26. Lei, J., He, Y., Guo, S., Li, Z., Liu, D.: Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. AIP Adv. 6, 105202 (2016)

    Article  Google Scholar 

  27. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matlab: Release 2022a: The MathWorks Inc., Natick, Massachusetts (2022)

  29. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  31. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rajabi, F., Ramezani, S.: A nonlinear microbeam model based on strain gradient elasticity theory with surface energy. Arch. Appl. Mech. 82, 363–376 (2012)

    Article  MATH  Google Scholar 

  33. Shahriari, B., Karamooz Ravari, M.R., Zeighampou, H.: Vibration analysis of functionally graded carbon nanotube-reinforced composite nanoplates using Mindlin’s strain gradient theory. Compos. Struct. 134, 1036–1043 (2015)

    Article  Google Scholar 

  34. Su, W., Liu, S.: Vibration analysis of periodic cellular solids based on an effective couple-stress continuum model. Int. J. Solids Struct. 51, 2676–2686 (2014)

    Article  Google Scholar 

  35. Togun, N., Bagdatli, S.M.: Size dependent nonlinear vibration of the tensioned nanobeam based on the modified couple stress theory. Compos. B 97, 255–262 (2016)

    Article  Google Scholar 

  36. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vajargah, M.K., Ansari, R.: Vibration analysis of two-dimensional micromorphic structures using quadrilateral and triangular elements. Eng. Comput. 39, 1922–1946 (2022)

    Article  Google Scholar 

  38. Wang, F.-Y., Zhou, Y.: On the vibration modes of three-dimensional micro polar elastic plates. J. Sound Vib. 146, 1–16 (1991)

    Article  Google Scholar 

  39. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  40. Yin, S., Deng, Y., Zhang, G., Yu, T., Gu, S.: A new isogeometric Timoshenko beam model incorporating microstructures and surface energy effects. Math. Mech. Solids 25, 2005–2022 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, G.Y., Gao, X.-L., Littlefield, A.G.: A non-classical model for circular cylindrical thin shells incorporating microstructure and surface energy effects. Acta Mech. 232, 2225–2248 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Apostolakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apostolakis, G., Dargush, G.F. Size-dependent couple stress natural frequency analysis via a displacement-based variational method for two- and three-dimensional problems. Acta Mech 234, 891–910 (2023). https://doi.org/10.1007/s00707-022-03421-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03421-1

Navigation