Skip to main content
Log in

A nonclassical formulation for torsion of variable cross section functionally graded microbars

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates the size-dependent static and dynamic behavior of functionally graded variable cross section microbars. To this goal, considering the formulation of the modified couple stress theory and utilizing Hamilton’s principle, the equation of motion and boundary conditions of the microbar are derived. To simplify the equation of motion, equivalent quantities including equivalent length scale parameters are proposed for the functionally graded tapered microbar. Using a semi-analytical approach, the equation of motion is solved and the static and dynamic responses of the system are calculated in general form. For a tapered functionally graded microbar made of aluminum and alumina, static torsion and natural frequencies are obtained and the effects of size dependency and volume fractions of material constituents on the static and dynamic behavior of the system are studied. As a special case of this study, the static torsion and natural frequencies of the uniform cross section microbars are calculated and compared to those from the literature. Furthermore, the convergence of the proposed semi-analytical method is investigated and the accuracy of this approach is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fu, Y., Du, H., Huang, W., Zhang, S., Hu, M.: TiNi-based thin films in MEMS applications: a review. Sens. Actuator A Phys. (2004). https://doi.org/10.1016/j.sna.2004.02.019

    Article  Google Scholar 

  2. Zhu, J., Ru, C., Mioduchowski, A.: High-order subharmonic parametric resonance of multiple nonlinearly coupled micromechanical nonlinear oscillators. Acta Mech. (2010). https://doi.org/10.1007/s00707-009-0242-8

    Article  MATH  Google Scholar 

  3. Iqbal, S., Malik, A.: A review on MEMS based micro displacement amplification mechanisms. Sens. Actuator A Phys. (2019). https://doi.org/10.1016/j.sna.2019.111666

    Article  Google Scholar 

  4. Szekacs, I., Orgovan, N., Peter, B., Kovacs, B., Horvath, R.: Receptor specific adhesion assay for the quantification of integrin–ligand interactions in intact cells using a microplate based label-free optical biosensor. Sens. Actuators B Chem. (2018). https://doi.org/10.1016/j.snb.2017.09.208

  5. Hajjaj, A.Z., Jaber, N., Alcheikh, N., Younis, M.I.: A resonant gas sensor based on multimode excitation of a buckled microbeam. IEEE Sens. J. (2019). https://doi.org/10.1109/JSEN.2019.2950495

    Article  Google Scholar 

  6. Tajalli, S., Movahhedy, M., Akbari, J.: Size dependent vibrations of micro-end mill incorporating strain gradient elasticity theory. J. Sound Vib. (2013). https://doi.org/10.1016/j.jsv.2013.01.038

    Article  Google Scholar 

  7. Hosseini, A., Rahaeifard, M., Mojahedi, M.: Analytical and numerical investigations of the ultrasonic microprobe considering size effects. Mech. Adv. Mater. Struct. (2019). https://doi.org/10.1080/15376494.2018.1539890

    Article  Google Scholar 

  8. Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. (1994). https://doi.org/10.1016/0956-7151(94)90502-9

    Article  Google Scholar 

  9. Stölken, J., Evans, A.: A microbend test method for measuring the plasticity length scale. Acta Mater. (1998). https://doi.org/10.1016/S1359-6454(98)00153-0

    Article  Google Scholar 

  10. Lam, D., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J Mech Phys Solids (2003). https://doi.org/10.1016/S0022-5096(03)00053-X

    Article  MATH  Google Scholar 

  11. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech. Microeng. (2005). https://doi.org/10.1088/0960-1317/15/5/024

    Article  Google Scholar 

  12. Zhang, C., Chen, W., Zhang, C.: Two-dimensional theory of piezoelectric plates considering surface effect. Eur. J. Mech. A/Solids. (2013). https://doi.org/10.1016/j.euromechsol.2013.02.005

    Article  MathSciNet  MATH  Google Scholar 

  13. Sarvestani, H.Y., Akbarzadeh, A., Mirabolghasemi, A.: Structural analysis of size-dependent functionally graded doubly-curved panels with engineered microarchitectures. Acta Mech. (2018). https://doi.org/10.1007/s00707-018-2120-8

    Article  Google Scholar 

  14. Zhang, Z., Liang, C., Wnag, Y., Xu, R., Gao, C., Zhang, C.: Static bending and vibration analysis of piezoelectric semiconductor beams considering surface effects. J. Vib. Eng. Technol. (2021). https://doi.org/10.1007/s42417-021-00328-4

    Article  Google Scholar 

  15. Zhang, C., Zhu, Z., Chen, W., Zhang, C.: Two-dimensional theory of piezoelectric shells considering surface effect. Eur. J. Mech. A/Solids. (2014). https://doi.org/10.1016/j.euromechsol.2013.09.007

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, C., Zhang, C., Chen, W.: Modeling of piezoelectric bimorph nano-actuators with surface effects. J. Appl. Mech. (2013). https://doi.org/10.1115/1.4023693

    Article  Google Scholar 

  17. Akgöz, B., Civalek, Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. (2015). https://doi.org/10.1007/s00707-015-1308-4

    Article  MathSciNet  MATH  Google Scholar 

  18. Soltani, D., Khorshidi, M.A.: A microstructure-based study on compact human bones: hierarchical length scale parameter. Acta Mech. (2021). https://doi.org/10.1007/s00707-020-02837-x

    Article  MathSciNet  Google Scholar 

  19. Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gradient theory for elasticity. Int J Solids Struct (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  20. Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal (1962). https://doi.org/10.1007/BF00253946

    Article  MathSciNet  Google Scholar 

  21. Rahaeifard, M., Kahrobaiyan, M., Asghari, M., Ahmadian, M.: Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sens. Actuator A Phys. (2011). https://doi.org/10.1016/j.sna.2011.08.025

    Article  MATH  Google Scholar 

  22. Baghani, M.: Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int J Eng Sci (2012). https://doi.org/10.1016/j.ijengsci.2012.01.001

    Article  Google Scholar 

  23. Kahrobaiyan, M., Asghari, M., Ahmadian, M.: A Timoshenko beam element based on the modified couple stress theory. Int. J. Mech. Sci. (2014). https://doi.org/10.1016/j.ijmecsci.2013.11.014

    Article  MATH  Google Scholar 

  24. Dai, H., Wang, Y., Wang, L.: Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. Int J Eng Sci (2015). https://doi.org/10.1016/j.ijengsci.2015.05.007

    Article  MathSciNet  MATH  Google Scholar 

  25. Awrejcewicz, J., Krysko, V., Pavlov, S., Zhigalov, M., Kalutsky, L., Krysko, A.: Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-04976-w

    Article  MATH  Google Scholar 

  26. Şimşek, M., Aydın, M., Yurtcu, H., Reddy, J.: Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory. Acta Mech. (2015). https://doi.org/10.1007/s00707-015-1437-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Ansari, R., Gholami, R., Mohammadi, V., Faghih Shojaei, M.: Size-dependent pull-in instability of hydrostatically and electrostatically actuated circular microplates. J. Comput. Nonlinear Dyn. (2013). https://doi.org/10.1115/1.4007358

    Article  Google Scholar 

  28. Beni, Y.T., Zeverdejani, M.K.: Free vibration of microtubules as elastic shell model based on modified couple stress theory. J Mech Med Biol (2015). https://doi.org/10.1142/S0219519415500372

    Article  Google Scholar 

  29. Lee, H.-L., Chang, W.-J.: Sensitivity of V-shaped atomic force microscope cantilevers based on a modified couple stress theory. Microelectron Eng (2011). https://doi.org/10.1016/j.mee.2011.09.001

    Article  Google Scholar 

  30. Karimzadeh, A., Ahmadian, M.T.: Vibrational characteristics of size dependent vibrating ring gyroscope. Sci. Iran. (2018). https://doi.org/10.24200/sci.2018.20495

    Article  Google Scholar 

  31. Rahaeifard, M., Mojahedi, M.: Size-dependent dynamic behavior of electrostatically actuated microaccelerometers under mechanical shock. Int. J. Struct. Stab. Dyn. (2017). https://doi.org/10.1142/S0219455417500420

    Article  MathSciNet  MATH  Google Scholar 

  32. Thai, H.-T., Vo, T.P., Nguyen, T.-K., Lee, J.: Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory. Compos. Struct. (2015). https://doi.org/10.1016/j.compstruct.2014.11.065

    Article  Google Scholar 

  33. Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S., Nguyen-Xuan, H., Vo, T.P.: A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Comput. Methods Appl. Mech. Eng. (2017). https://doi.org/10.1016/j.cma.2016.10.002

    Article  MathSciNet  MATH  Google Scholar 

  34. Mohammadimehr, M., Shahedi, S., Rousta Navi, B.: Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. (2017). https://doi.org/10.1177/0954406216653622

    Article  Google Scholar 

  35. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A., Mahmoud, S.: Vibration analysis of different material distributions of functionally graded microbeam. Struct. Eng. Mech. (2019). https://doi.org/10.12989/sem.2019.69.6.637

    Article  Google Scholar 

  36. Zhang, Z., Li, S.: Thermoelastic damping of functionally graded material micro-beam resonators based on the modified couple stress theory. Acta Mech. Solida Sin. (2020). https://doi.org/10.1007/s10338-019-00155-x

    Article  Google Scholar 

  37. Shanab, R.A., Mohamed, S.A., Mohamed, N.A., Attia, M.A.: Comprehensive investigation of vibration of sigmoid and power law FG nanobeams based on surface elasticity and modified couple stress theories. Acta Mech. (2020). https://doi.org/10.1007/s00707-020-02623-9

    Article  MathSciNet  MATH  Google Scholar 

  38. Tao, C., Dai, T.: Modified couple stress-based nonlinear static bending and transient responses of size-dependent sandwich microplates with graphene nanocomposite and porous layers. Thin Wall Struct. (2022). https://doi.org/10.1016/j.tws.2021.108704

    Article  Google Scholar 

  39. Amar, L.H.H., Kaci, A., Tounsi, A.: On the size-dependent behavior of functionally graded micro-beams with porosities. Struct. Eng. Mech. (2017). https://doi.org/10.12989/sem.2017.64.5.527

    Article  Google Scholar 

  40. Ansari, R., Gholami, R., Norouzzadeh, A., Sahmani, S.: Size-dependent vibration and instability of fluid-conveying functionally graded microshells based on the modified couple stress theory. Microfluid. Nanofluid. (2015). https://doi.org/10.1007/s10404-015-1577-1

    Article  Google Scholar 

  41. Tadi Beni, Y., Mehralian, F., Zeighampour, H.: The modified couple stress functionally graded cylindrical thin shell formulation. Mech. Adv. Mater. Struct. (2016). https://doi.org/10.1080/15376494.2015.1029167

    Article  MATH  Google Scholar 

  42. Lai, W.M., Rubin, D.H., Krempl, E., Rubin, D.: Introduction to continuum mechanics. Butterworth-Heinemann, United States (2009)

    MATH  Google Scholar 

  43. Cheng, Z.Q., Batra, R.: Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Compos. B. Eng. (2000). https://doi.org/10.1016/S1359-8368(99)00069-4

    Article  Google Scholar 

  44. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S., Bég, O.A.: An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. B. Eng. (2014). https://doi.org/10.1016/j.compositesb.2013.12.057

    Article  Google Scholar 

  45. Al-Basyouni, K.S., Tounsi, A., Mahmoud, S.R.: Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position. Compos. Struct. (2015). https://doi.org/10.1016/j.compstruct.2014.12.070

    Article  Google Scholar 

  46. Rahaeifard, M.: Size-dependent torsion of functionally graded bars. Compos. B. Eng. (2015). https://doi.org/10.1016/j.compositesb.2015.08.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Mohammadi Arani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi Arani, E., Rahaeifard, M. A nonclassical formulation for torsion of variable cross section functionally graded microbars. Acta Mech 233, 3481–3495 (2022). https://doi.org/10.1007/s00707-022-03288-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03288-2

Navigation