Skip to main content
Log in

Analytical modeling of the coupled nonlinear free vibration response of a rotating blade in a gas turbine engine

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we investigate the free vibration response of a rotating blade in a gas turbine engine. The blade is modeled as a tapered Timoshenko beam with nonlinear variations in its cross-section properties. The governing equations of motions are derived using Lagrangian mechanics and Rayleigh–Ritz method. These equations take into account centrifugal stiffening, axial and lateral coupling due to Coriolis effect, shear deformation, and rotary inertia. We examine the effect of the beam geometry upon its axial and lateral free vibration response. The effects of rotational speed, taper ratio, chord ratio, hub radius, and slenderness ratio on the natural frequencies are analyzed. The results of our analysis indicate that the taper ratio, slenderness ratio, and rotational speed of the beam govern its free lateral vibration response. The axial vibration of the beam is significantly affected by the slenderness ratio, but it is found to be independent of the hub radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Cross-section area of the beam

\(A_{a}\) :

Coefficients for polynomial of the cross-section area

\(A_{r}\) :

Cross-section area of the beam at the hub

C :

Coriolis damping matrix

E :

Young’s modulus

\(F_\mathrm{cf}\) :

Centrifugal force

G :

Shear modulus

I :

Area moment of inertia

\(I_{a}\) :

Coefficients for polynomial of the moment of inertia

\(I_{r}\) :

Moment of inertia of the beam at the hub

K :

Total stiffness matrix

\(\mathbf{K}^{\mathbf{m}}\) :

Elastic property-dependent stiffness matrix

\(\mathbf{K}^{{\varvec{\Omega }} }\) :

Rotational speed-dependent stiffness matrix

L :

Length of the beam

M :

Mass matrix

P :

Force vector

R :

Radius of the tip of the beam

T :

Kinetic energy of the beam

T :

Transformation matrix

U :

Total potential energy

\(U_{W}\) :

Work done by applied forces

\(U_{\gamma }\) :

Potential energy due to shear strain

\(U_{\varepsilon }\) :

Potential energy due to axial strain

\(W, U, \Phi \) :

Displacement component of shape functions

XYZ :

Time-dependent generalized coordinates

c :

Chord length

\(c_{R}\) :

Chord length at the tip

\(c_{r}\) :

Chord length at the hub

\(\bar{{c}}\) :

Chord ratio

\(\left( {\hat{{e}}_z ,\hat{{e}}_s ,\hat{{e}}_c } \right) \) :

Rotating coordinate system

d :

Displacement field vector

h :

Thickness of the beam

\(h_{R}\) :

Thickness of the beam at the tip

\(h_{r}\) :

Thickness of the beam at the hub

\(\bar{{h}}\) :

Taper ratio

k :

Shear coefficient

m :

Mass of the beam

\(n_{A}\) :

Index of order of polynomial for area

\(n_{I}\) :

Index of order of polynomial for moment of inertia

r :

Radius of the hub of the beam

r :

Position vector of a typical point on the beam in stationary coordinate system

\(\mathbf{r}_{{\mathbf{r}}}\) :

Position vector of a typical point on the beam in rotating coordinate system

\(\bar{{r}}\) :

Non-dimensional hub radius

s :

Span of the beam

u :

Axial displacement

v :

Velocity vector

w :

Lateral displacement

z :

Distance of a typical fiber of the beam on a given cross-section area along lateral direction

\(\Lambda \) :

Lagrangian

\(\varOmega \) :

Rotational speed

\(\bar{{\varOmega }}\) :

Non-dimensional rotational speed

\(\beta \) :

Stagger angle of the beam

\(\gamma _{sz}\) :

Shear strain

\({\varvec{\upvarepsilon }}\) :

Linear strain tensor

\(\varepsilon _\mathrm{s}\) :

Axial strain

\(\theta \) :

Rotational angle \(\varOmega t\)

{\(\xi \)}:

Generalized coordinate

\(\rho \) :

Density

\(\varphi \) :

cross-section rotation

\(\omega _{n}\) :

Natural frequency (rad/s)

\(\bar{{\omega }}_n\) :

Non-dimensional natural frequency

References

  1. Hodges, D.H., Rutkowskij, M.J.: Free-vibration analysis of rotating beams by a variable-order finite-element method. AIAA J. 19, 1459–1466 (1981). https://doi.org/10.2514/3.60082

    Article  MATH  Google Scholar 

  2. Wang, X., Shi, J.: Validation of Johnson–Cook plasticity and damage model using impact experiment. Int. J. Impact Eng. 60, 67–75 (2013). https://doi.org/10.1016/j.ijimpeng.2013.04.010

    Article  Google Scholar 

  3. Bazoune, A.: Effect of tapering on natural frequencies of rotating beams. Shock Vib. 14, 169–179 (2007). https://doi.org/10.1155/2007/865109

    Article  Google Scholar 

  4. Zhou, D., Cheung, Y.K.: The free vibration of a type of tapered beams. Comput. Methods Appl. Mech. Eng. 188, 203–216 (2000). https://doi.org/10.1016/S0045-7825(99)00148-6

    Article  MATH  Google Scholar 

  5. Ece, M.C., Aydogdu, M., Taskin, V.: Vibration of a variable cross-section beam. Mech. Res. Commun. 34, 78–84 (2007). https://doi.org/10.1016/j.mechrescom.2006.06.005

    Article  MATH  Google Scholar 

  6. Mao, Q., Pietrzko, S.: Free vibration analysis of a type of tapered beams by using Adomian decomposition method. Appl. Math. Comput. 219, 3264–3271 (2012). https://doi.org/10.1016/j.amc.2012.09.069

    MathSciNet  MATH  Google Scholar 

  7. Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control. Dyn. 12, 139–151 (1987). https://doi.org/10.2514/3.20195

    Article  Google Scholar 

  8. Khulief, Y.A.: Vibration frequencies of a rotating tapered beam with end mass. J. Sound Vib. 134, 87–97 (1989). https://doi.org/10.1016/0022-460X(89)90738-4

    Article  Google Scholar 

  9. Naguleswaran, S.: Lateral vibration of a centrifugally tensioned uniform Euler–Bernoulli beam. J. Sound Vib. 176, 613–624 (1994). https://doi.org/10.1006/jsvi.1994.1402

    Article  MATH  Google Scholar 

  10. Yang, J.B., Jiang, L.J., Chen, D.C.: Dynamic modelling and control of a rotating Euler–Bernoulli beam. J. Sound Vib. 274, 863–875 (2004). https://doi.org/10.1016/S0022-460X(03)00611-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Banerjee, J.R., Su, H.: Development of a dynamic stiffness matrix for free vibration analysis of spinning beams. Comput. Struct. 82, 2189–2197 (2004). https://doi.org/10.1016/j.compstruc.2004.03.058

    Article  Google Scholar 

  12. Banerjee, J.R., Su, H., Jackson, D.R.: Free vibration of rotating tapered beams using the dynamic stiffness method. J. Sound Vib. 298, 1034–1054 (2006). https://doi.org/10.1016/j.jsv.2006.06.040

    Article  Google Scholar 

  13. Wang, G., Wereley, N.M.: Free vibration analysis of rotating blades with uniform tapers. AIAA J. 42, 2429–2437 (2004). https://doi.org/10.2514/1.4302

    Article  Google Scholar 

  14. Ozgumus, O.O., Kaya, M.O.: Flapwise bending vibration analysis of double tapered rotating Euler–Bernoulli beam by using the differential transform method. Meccanica 41, 661–670 (2006). https://doi.org/10.1007/s11012-006-9012-z

    Article  MATH  Google Scholar 

  15. Attarnejad, R., Shahba, A.: Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams. A mechanical solution. Meccanica 46, 1267–1281 (2011). https://doi.org/10.1007/s11012-010-9383-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Firouz-abadi, R.D., Haddadpour, H., Novinzadeh, A.B.: An asymptotic solution to transverse free vibrations of variable-section beams. J. Sound Vib. 304, 530–540 (2007). https://doi.org/10.1016/j.jsv.2007.02.030

    Article  Google Scholar 

  17. Lee, J.W., Lee, J.Y.: Free vibration analysis using the transfer-matrix method on a tapered beam. Comput. Struct. 164, 75–82 (2016). https://doi.org/10.1016/j.compstruc.2015.11.007

    Article  Google Scholar 

  18. Vinod, K.G., Gopalakrishnan, S., Ganguli, R.: Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements. Solids Struct. 44, 5875–5893 (2007). https://doi.org/10.1016/j.ijsolstr.2007.02.002

    Article  MATH  Google Scholar 

  19. Fung, E.H.K., Yau, D.T.W.: Effects of centrifugal stiffening on the vibration frequencies of a constrained flexible arm. J. Sound Vib. 224, 809–841 (1999). https://doi.org/10.1006/jsvi.1999.2212

    Article  Google Scholar 

  20. Huang, C.L., Lin, W.Y., Hsiao, K.M.: Free vibration analysis of rotating Euler beams at high angular velocity. Comput. Struct. 88, 991–1001 (2010). https://doi.org/10.1016/j.compstruc.2010.06.001

    Article  Google Scholar 

  21. Liao, C.-L., Huang, B.-W.: Parametric instability of a spinning pretwisted beam under periodic axial force. Int. J. Mech. Sci. 37, 423–439 (1994). https://doi.org/10.1017/CBO9781107415324.004

    Article  MATH  Google Scholar 

  22. Sarkar, K., Ganguli, R.: Closed-form solutions for non-uniform Euler–Bernoulli free-free beams. J. Sound Vib. 332, 6078–6092 (2013). https://doi.org/10.1016/j.jsv.2013.06.008

    Article  Google Scholar 

  23. Weaver Jr., W., Timoshenko, S.P., Young, D.H.: Vibration problems in engineering. Wiley, New York (1990)

    Google Scholar 

  24. Lee, S.Y., Lint, S.M.: Exact vibration solutions for nonuniform Timoshenko beams with attachments. AIAA J. 30, 2930–2934 (1992). https://doi.org/10.2514/3.48979

    Article  MATH  Google Scholar 

  25. Auciello, N.M., Ercolano, A.: A general solution for dynamic response of axially loaded non-uniform Timoshenko beams. Int. J. Solids Struct. 41, 4861–4874 (2004). https://doi.org/10.1016/j.ijsolstr.2004.04.036

    Article  MATH  Google Scholar 

  26. Yuan, S., Ye, K., Xiao, C., Williams, F.W., Kennedy, D.: Exact dynamic stiffness method for non-uniform Timoshenko beam vibrations and Bernoulli–Euler column buckling. J. Sound Vib. 303, 526–537 (2007). https://doi.org/10.1016/j.jsv.2007.01.036

    Article  MATH  Google Scholar 

  27. Ozgumus, O.O., Kaya, M.O.: Vibration analysis of a rotating tapered Timoshenko beam using DTM. Meccanica 45, 33–42 (2010). https://doi.org/10.1007/s11012-009-9221-3

    Article  MATH  Google Scholar 

  28. Zhou, D., Cheung, Y.K.: Vibrations of tapered Timoshenko beam in terms of static Timoshenko beam functions. J. Appl. Mech. 68, 596–602 (2001). https://doi.org/10.1115/1.1357164

    Article  MATH  Google Scholar 

  29. Huang, Y., Yang, L.-E., Luo, Q.-Z.: Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section. Compos. Part B Eng. 45, 1493–1498 (2013). https://doi.org/10.1016/j.compositesb.2012.09.015

    Article  Google Scholar 

  30. Abbas, B.A.H.: Dynamic stability of a rotating Timoshenko beam with a flexible root. J. Sound Vib. 108, 25–32 (1986). https://doi.org/10.1016/S0022-460X(86)80308-X

    Article  Google Scholar 

  31. Datta, P.K., Ganguli, R.: Vibration characteristics of a rotating blade with localized damage including the effects of shear deformation and rotary inertia. Comput. Struct. 36, 1129–1133 (1990). https://doi.org/10.1016/0045-7949(90)90221-M

    Article  Google Scholar 

  32. Ozgumus, O.O., Kaya, M.O.: Energy expressions and free vibration analysis of a rotating double tapered Timoshenko beam featuring bending-torsion coupling. Int. J. Eng. Sci. 45, 562–586 (2007). https://doi.org/10.1016/j.ijengsci.2007.04.005

    Article  MATH  Google Scholar 

  33. Ozgumus, O.O., Kaya, M.O.: Flapwise bending vibration analysis of a rotating double-tapered Timoshenko beam. Arch. Appl. Mech. 78, 379–392 (2008). https://doi.org/10.1007/s00419-007-0158-5

    Article  MATH  Google Scholar 

  34. Zhu, T.-L.: Free flapewise vibration analysis of rotating double-tapered Timoshenko beams. Arch. Appl. Mech. 82, 479–494 (2012). https://doi.org/10.1007/s00419-011-0568-2

    Article  MATH  Google Scholar 

  35. Lee, S.-Y., Lin, S.-M., Lin, Y.-S.: Instability and vibration of a rotating Timoshenko beam with precone. Int. J. Mech. Sci. 51, 114–121 (2009). https://doi.org/10.1016/j.ijmecsci.2008.12.008

    Article  MATH  Google Scholar 

  36. Rajasekaran, S.: Free vibration analysis of axially functionally graded tapered Timoshenko beams using differential transformation element method and differential quadrature element method of lowest-order. Appl. Math. Model. 37, 4440–4463 (2013). https://doi.org/10.1007/s11012-013-9847-z

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, Y., Zhang, J., Zhang, H.: Free vibration analysis of rotating tapered Timoshenko beams via variational iteration method. J. Vib. Control 23, 220–234 (2015). https://doi.org/10.1177/1077546315576431

    Article  MathSciNet  Google Scholar 

  38. Lee, H.P.: Buckling and dynamic stability of spinning pre-twisted beams under compressive axial loads. Int. J. Mech. Sci. 36, 1011–1026 (1994). https://doi.org/10.1016/0020-7403(94)90024-8

    Article  MATH  Google Scholar 

  39. Chen, C.K., Ho, S.H.: Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform. Int. J. Mech. Sci. 41, 1339–1356 (1999). https://doi.org/10.1016/S0020-7403(98)00095-2

    Article  MATH  Google Scholar 

  40. Yardimoglu, B., Yildirim, T.: Finite element model for vibration analysis of pre-twisted Timoshenko beam. J. Sound Vib. 273, 741–754 (2004). https://doi.org/10.1016/j.jsv.2003.05.003

    Article  Google Scholar 

  41. Lin, S.C., Hsiao, K.M.: Vibration analysis of a rotating Timoshenko beam. J. Sound Vib. 240, 303–322 (2001). https://doi.org/10.1006/jsvi.2000.3234

    Article  MATH  Google Scholar 

  42. Lee, S.Y., Sheu, J.J.: Free vibration of an extensible rotating inclined Timoshenko beam. J. Sound Vib. 304, 606–624 (2007). https://doi.org/10.1016/j.jsv.2007.03.005

    Article  MATH  Google Scholar 

  43. Ibrahim, S.M., Alsayed, S.H., Abbas, H., Carrera, E., Al-Salloum, Y.A., Almusallam, T.H.: Free vibration of tapered beams and plates based on unified beam theory. J. Vib. Control 20, 2450–2463 (2014). https://doi.org/10.1177/1077546312473766

    Article  MathSciNet  Google Scholar 

  44. Ghafarian, M., Ariaei, A.: Free vibration analysis of a system of elastically interconnected rotating tapered Timoshenko beams using differential transform method. Int. J. Mech. Sci. 107, 93–109 (2016). https://doi.org/10.1016/j.ijmecsci.2015.12.027

    Article  Google Scholar 

  45. Yardimoglu, B.: A novel finite element model for vibration analysis of rotating tapered Timoshenko beam of equal strength. Finite Elem. Anal. Des. 46, 838–842 (2010). https://doi.org/10.1016/j.finel.2010.05.003

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Meguid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P.A., Meguid, S.A. Analytical modeling of the coupled nonlinear free vibration response of a rotating blade in a gas turbine engine. Acta Mech 229, 3355–3373 (2018). https://doi.org/10.1007/s00707-018-2165-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2165-8

Navigation