Skip to main content
Log in

Nonlinear finite element modeling of large deformation of nanobeams

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this article, the finite element method is utilized to understand the bending response of both straight and tapered nanowires under large deformation. The force field caused by the residual surface stress is applied in the nanowire longitudinal direction and is formulated accordingly. Then, a finite element code is developed to analyze the large bending responses of the nanobeam in three different boundary conditions. As expected, the cantilever nanowire behaves softly under the positive surface stress and rigidly when the surface stress is negative. However, the simply supported and fixed–fixed nanobeams act like a more rigid beam for \(\sigma _0 >0\) and present softer behavior for \(\sigma _0 <0\). In addition, in the high value of forces in the cantilever beam, for which the deformation becomes large, the curvature tends to significantly increase, and the effect of surface stress disappears. Bending of tapered nanobeams is also analyzed the same way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kurokawa, Y., Kato, S., Konagai, M.: Effect of tapered shape on performance of silicon nanowire solar cells. In: Proceedings of SPIE 9178 Next Generation Technologies for Solar Energy Conversion V, 91780N (2014). doi:10.1117/12.2061291

  2. Chatterjee, A., et al.: Spectrophotometric investigation on the growth mechanism of a single tapered CuO nanowire. In: Materials Research Society Symposium Proceedings, vol. 1206 (2010)

  3. Gong, X., Jiang, Y., Li, M., Liu, H., Ma, H.: Hybrid tapered silicon nanowire/PEDOT: PSS solar cells. RSC Adv. 5, 10310 (2015)

    Article  Google Scholar 

  4. Issa, N.A., Guckenberger, R.: Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons. Opt. Express 15, 12131–12144 (2007)

    Article  Google Scholar 

  5. Zhu, J., et al.: Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279–282 (2009)

    Article  Google Scholar 

  6. Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007)

    Article  Google Scholar 

  7. He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798 (2008)

    Article  Google Scholar 

  8. Kulkarni, A.J., Zhou, M., Ke, F.J.: Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16, 2749 (2005)

    Article  Google Scholar 

  9. Zhang, T.Y., Luo, M., Chan, W.K.: Size-dependent surface stress, surface stiffness, and Young’s modulus of hexagonal prism [111] \(\beta \)-SiC nanowires. J. Appl. Phys. 103, 104308 (2008)

    Article  Google Scholar 

  10. Jiang, W., Batra, R.C.: Molecular statics simulations of buckling and yielding of gold nanowires deformed in axial compression. Acta Mater. 57, 4921–4932 (2009)

    Article  Google Scholar 

  11. Wei, G., Shouwen, Y., Ganyun, H.: Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology 17(4), 1118–1122 (2006)

    Article  Google Scholar 

  12. Farsad, M., Vernerey, F.J., Park, H.S.: An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int. J. Numer. Methods Eng. 84, 1466–1489 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, J.L., et al.: Large displacement of a static bending nanowire with surface effects. Physica E 44, 2050–2055 (2012)

    Article  Google Scholar 

  14. Khajeansari, A., Baradaran, G.H., Yvonnet, J.: An explicit solution for bending of nanowires lying on Winkler–Pasternak elastic substrate medium based on the Euler–Bernoulli beam theory. Int. J. Eng. Sci. 52, 115–128 (2012)

    Article  Google Scholar 

  15. Yun, G., Park, H.S.: Surface stress effects on the bending properties of FCC metal nanowires. Phys. Rev. B 79, 195421 (2009)

    Article  Google Scholar 

  16. She, H., Wang, B.: A geometrically nonlinear finite element model of nanomaterials with consideration of surface effects. Finite Elem. Anal. Des. 45, 463–467 (2009)

    Article  MathSciNet  Google Scholar 

  17. Park, H.S., Klein, P.A., Wagner, G.J.: A surface Cauchy–Born model for nanoscale materials. Int. J. Numer. Methods Eng. 68, 1072–1095 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zheng, X.P., et al.: Surface effects in various bending-based test methods for measuring the elastic property of nanowires. Nanotechnology 21, 205702 (2010)

    Article  Google Scholar 

  19. Zhan, H.F., Gu, Y.: Surface effects on the dual-mode vibration of 110 silver nanowires with different cross-sections. J. Phys. D Appl. Phys. 45, 465304–465313 (2012)

    Article  Google Scholar 

  20. Zhan, H.F., Gu, Y.: Modified beam theories for bending properties of nanowires considering surface/intrinsic effects and axial extension effect. J. Appl. Phys. 111, 084305 (2012)

    Article  Google Scholar 

  21. Song, F., et al.: A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses. Int. J. Solids Struct. 48, 2154–2163 (2011)

    Article  Google Scholar 

  22. He, L., et al.: Deflections of nanowires with consideration of surface effects. Chin. Phys. Lett. 27, 126201 (2010)

    Article  Google Scholar 

  23. Song, F., Huang, G.L.: Modeling of surface stress effects on bending behavior of nanowires: incremental deformation theory. Phys. Lett. A 373, 3969–3973 (2009)

    Article  MATH  Google Scholar 

  24. Yvonnet, J., et al.: An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites. Comput. Mech. 42, 119–131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, J., Lilley, C.M.: The finite element absolute nodal coordinate formulation incorporated with surface stress effect to model elastic bending nanowires in large deformation. Comput. Mech. 44, 395–403 (2009)

    Article  MATH  Google Scholar 

  26. Park, H.S., Klein, P.A.: A surface Cauchy–Born model for silicon nanostructures. Comput. Methods Appl. Mech. Eng. 197, 3249–3260 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Park, H.S., Klein, P.A.: Surface Cauchy–Born analysis of surface stress effects on metallic nanowires. Phys. Rev. B 75, 085408 (2007)

    Article  Google Scholar 

  28. Javili, A., et al.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65, 010802 (2012)

    Article  Google Scholar 

  29. Javili, A., Steinmann, P.: A finite element framework for continua with boundary energies. Part I: the two-dimensional case. Comput. Methods Appl. Mech. Eng. 198, 2198–2208 (2009)

    Article  MATH  Google Scholar 

  30. Wang, J., et al.: An explicit solution of the large deformation of a cantilever beam under point load at the free tip. J. Comput. Appl. Math. 212, 320–330 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zeng, D., Zheng, Q.: Large deflection theory of nanobeams. Acta Mech. Solida Sin. 23, 394–399 (2010)

  32. Kiani, K.: Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique. Physica E 43, 387–397 (2010)

    Article  Google Scholar 

  33. Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford. ISBN: 019852529X (2004)

  34. Meng, X., et al.: A mechanical model for self-assembled graphene around nanotube. Int. J. Appl. Mech. 6, 1450036 (2014)

    Article  Google Scholar 

  35. Ansari, R., Gholami, R.: Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory. Int. J. Appl. Mech. 08, 1650053 (2016)

    Article  Google Scholar 

  36. Thongyothee, C., Chucheepsakul, S.: Postbuckling of unknown-length nanobeam considering the effects of nonlocal elasticity and surface stress. Int. J. Appl. Mech. 07, 1550042 (2015)

    Article  Google Scholar 

  37. Ma, Y., et al.: Hybrid natural element method for elastic large deformation problems. Int. J. Appl. Mech. 08, 1650044 (2016)

    Article  Google Scholar 

  38. Rafiee, M., et al.: Nonlinear response of piezoelectric nanocomposite plates: large deflection. Post-buckling and large amplitude vibration. Int. J. Appl. Mech. 07, 1550074 (2015)

    Article  Google Scholar 

  39. Zhong, J., et al.: Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model. Appl. Math. Model. 40, 7601–7614 (2016)

    Article  MathSciNet  Google Scholar 

  40. He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)

    Article  Google Scholar 

  41. Eltaher, M.A., et al.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016)

    Article  MathSciNet  Google Scholar 

  42. Rouhi, H., Ansari, R., Darvizeh, M.: Size-dependent free vibration analysis of nanoshells based on the surface stress elasticity. Appl. Math. Model. 40, 3128–3140 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ponbunyanon, P., et al.: A novel beam-elastic substrate model with inclusion of nonlocal elasticity and surface energy effects. Arab. J. Sci. Eng. 41, 4099–4113 (2016)

    Article  MathSciNet  Google Scholar 

  44. Xu, X.-J., et al.: Surface effects on the bending, buckling and free vibration analysis of magneto-electro-elastic beams. Acta Mech. 227, 1557–1573 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Fernandes, R., Mousavi, S.M., El-Borgi, S.: Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory. Acta Mech. 227, 2657–2670 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heoung-jae Chun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasheminia, S.M., Baradaran, G.H. & Chun, Hj. Nonlinear finite element modeling of large deformation of nanobeams. Acta Mech 229, 21–32 (2018). https://doi.org/10.1007/s00707-017-1929-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1929-x

Navigation